2021 ◽  
Vol 1034 (1) ◽  
pp. 012026
Author(s):  
Abdi Ismail ◽  
Achmad Zubaydi ◽  
Bambang Piscesa ◽  
Ervan Panangian ◽  
Rizky Chandra Ariesta ◽  
...  

2013 ◽  
Vol 658 ◽  
pp. 340-344
Author(s):  
Somsak Siwadamrongpong ◽  
Supakit Rooppakhun ◽  
Natchaya Murachai ◽  
Pakorn Burakorn

Since the vehicle accident is one of the major causes of dead and injury in Thailand, especially the large passenger vehicle. The seat anchorage was often damaged and lead to high number and critical of patient. To improve the safety of large passenger vehicle, seat anchorage should be investigated. The aim of this research was to analyze strength of seat anchorages for the bus according to European standard ECE Regulation 80 using finite element method and DOE(Design of Experimental) approach. In this study, the boundary conditions on finite element model of seat structure were defined according to the regulation. It is expected that the simulation techniques could be advantaged for seat anchorage analysis. This result will be used for further improvement of the bus seat anchorage design for safety and cost reduction in design processes.


2016 ◽  
Vol 851 ◽  
pp. 720-727
Author(s):  
Yu Chuan Lin ◽  
Wen Jeng Hsueh

The aim of this study is to develop structural strength analysis technique and real-time measuring system of composite laminate using finite element method (FEM) and fiber bragg grating (FBG) sensor. A composite laminate of cantilever beam was designed and fabricated using glass fiber reinforced plastic (GFRP) for structural mechanics behavior research. Six design cases of different orientations composite laminate were considered for the better combinations by using FEM program. The bending test of a composite laminate of cantilever beam was performed by using FBG sensor to obtained relationship between strain and displacement. The study result shows that the higher stiffness of composite laminate of cantilever beam was obtained in the [0/90/0/90] orientation. The first natural frequency is 34.83 Hz and corresponding mode shape is bending mode in Z-direction. The FEM and FBG sensor have been successfully used in variety of composite laminate design with different layering sequences by this article.


1982 ◽  
Vol 11 (4) ◽  
pp. 310-327
Author(s):  
H. Irokazu ◽  
M. Inami ◽  
Yoshio Nakahara

Methods for analysing coated plain-weave fabric which has properties of nonlinear elasticity have not yet been satisfactorily developed. In this paper, a method which is promis ing for use in engineering applications like the strength analysis of membrane structures is presented. The finite element method using a rectangular element consisting of plain-weave fabric and coating material which is assumed to be an isotropic elastic plate of plane stress is applied to the method. Verification of the me thod is made by using uniaxial stress-strain responses. A square piece of coated plain-weave fabric with a square hole in it is analyzed as an example of application of the present method. Key Words: coated plain-weave fabrics; finite element method; nonlinearly elastic biaxial response; geometrically nonlinear prob lem ; incremental approach.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1788-1794
Author(s):  
Han Ki Yoon ◽  
Joon Soo Park ◽  
Sang Pill Lee ◽  
Yi Hyun Park ◽  
Yu Sik Kong ◽  
...  

As for the properties on both the aluminum and the CFRP which are used to make CFRP/AL7075 hybrid composites, CARALL (carbon reinforced aluminum laminate). In the CARALL specimen for rule of mixture, we were analyzed notched strength by finite element method. The results obtained from FEM notched strength analysis and experimental are as follows; In the unnotch CARALL specimen, the stresses imposed CFRP, epoxy, A17075 obtained by finite element method strength solution for A/C9991, when strain 0.48%, are 392 Mpa, 26 Mpa and 321 Mpa, respectively. The slope of the stress-strain curve by FEM increase in keeping with the hole size and the yield strain decrease to 36% and 55% for A/C9993 and A/C9991 respectively. And an agreement is found between the experimental results and the FEM analytical prediction results.


Author(s):  
E. V. Barmekova

The paper presents the strength analysis of variable rigidity slabs on elastic support with the variable subgrade ratio. The analysis is based on a solution of the differential equation of the slab flexure using the finite element method. The results are obtained for different slabs on the elastic support. The results are presented for the different thickness of the upper layer of the two-layer slab on the elastic support with the variable subgrade ratio.


2021 ◽  
Vol 299 ◽  
pp. 01014
Author(s):  
Zhi Liu

Chuck is one of the key parts of coal mine tunnel drill, its performance directly affects the performance of the machine. In view of the existing problems of the hydraulic chuck, the structure of the new hydraulic chuck is designed and its working principle is briefly described. The strength of slips is analyzed by finite element method. The calculation results show that the initial design of slips meets the requirements of tunnel drilling rigs.


Sign in / Sign up

Export Citation Format

Share Document