scholarly journals Performance assessment of vapor compression systems utilizing low global warming potential hydrocarbons and carbon dioxide as working fluids

2018 ◽  
Author(s):  
Aljohani
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Bartosz Gil ◽  
Anna Szczepanowska ◽  
Sabina Rosiek

In this work, which is related to the current European Parliament Regulation on restrictions affecting refrigeration, four new three-component refrigerants have been proposed; all were created using low Global Warming Potential(GWP) synthetic and natural refrigerants. The considered mixtures consisted of R32, R41, R161, R152a, R1234ze (E), R1234yf, R1243zf, and RE170. These mixtures were theoretically tested with a 10% step in mass fraction using a triangular design. The analysis covered two theoretical cooling cycles at evaporating temperatures of 0 and −30 °C, and a 30 °C constant condensing temperature. The final stage of the work was the determination of the best mixture compositions by thermodynamic and operational parameters. R1234yf–R152a–RE170 with a weight share of 0.1/0.5/0.4 was determined to be the optimal mixture for potentially replacing the existing refrigerants.


Author(s):  
Rabah Touaibi ◽  
Hasan Koten

An energy analysis study carried out on a vapor compression refrigeration cycle using refrigerants with low global warming potential (GWP) of the Hydro-Fluoro-Olefin (HFO) type, in particular R1234yf and R1234ze fluids to replace HFC refrigerants . Computer code was developed using software for solving engineering equations to calculate performance parameters; for this, three HFC type fluids (R134a, R404A and R410A) were selected for a comparative study. The results showed that R1234ze is the best refrigerant among those selected for the mechanical vapor compression refrigeration cycle. The thermodynamic analysis showed the effect of the evaporator temperature (-22 °C to 10 °C) and the condenser temperature (30 °C to 50 °C) on the steam cycle performance. Compression refrigeration, including the coefficient of performance. The results showed that the HFO-R1234ze with low GWP gives the best coefficient of performance of 3.14 close to that of the R134a fluid (3.17). In addition, R1234ze is considered an alternative fluid to R134a for their ecological properties.


Sign in / Sign up

Export Citation Format

Share Document