scholarly journals JOINT AUTOMATIC GAIN CONTROL AND RECEIVER DESIGN FOR QUANTIZED LARGE-SCALE MU-MIMO SYSTEMS

Author(s):  
THIAGO ELIAS BITENCOURT CUNHA
2019 ◽  
Vol 28 (supp01) ◽  
pp. 1940002 ◽  
Author(s):  
Milan R. Dinčić ◽  
Zoran H. Perić ◽  
Dragan B. Denić ◽  
Zoran Stamenković

This paper considers the design of robust logarithmic [Formula: see text]-law companding quantizers for the use in analog-to-digital converters (ADCs) in communication system receivers. The quantizers are designed for signals with the Gaussian distribution, since signals at the receivers of communication systems can be very well modeled by this type of distribution. Furthermore, linearization of the logarithmic [Formula: see text]-law companding function is performed to simplify hardware implementation of the quantizers. In order to reduce energy consumption, low-resolution quantizers are considered (up to 5 bits per sample). The main advantage of these quantizers is high robustness — they can provide approximately constant SNR in a wide range of signal power (this is very important since the signal power at receivers can vary in wide range, due to fading and other transmission effects). Using the logarithmic [Formula: see text]-law companding quantizers there is no need for using automatic gain control (AGC), which reduces the implementation complexity and increases the speed of the ADCs due to the absence of AGC delay. Numerical results show that the proposed model achieves good performances, better than a uniform quantizer, especially in a wide range of signal power. The proposed low-bit ADCs can be used in MIMO and 5G massive MIMO systems, where due to very high operating frequencies and a large number of receiving channels (and consequently a large number of ADCs), the reduction of ADC complexity and energy consumption becomes a significant goal.


1990 ◽  
Vol 36 (123) ◽  
pp. 133-142 ◽  
Author(s):  
F. Remy ◽  
C. Brossier ◽  
J.F. Minster

AbstractWe analyse, above continental ice, the various factors which affect the power return of the Seasat radar altimeter as measured by its Automatic Gain Control (AGC). Corrections of effects due to the AGC loop control are first applied. AGC is then normalized by positioning the half-power point at the middle of the instrument receiving window. This operation is valid for both surface and volume scattering. Over a part of Antarctica between long. 90° and 150°E., the remaining variations of AGC are of the order of 15 dB. Most of these variations occur on a large scale (>100km) and are correlated with the katabatic wind intensity. This indicates that AGC measures either surface roughness of the ice, which is related to wind intensity, or grain-size which could also be dependent on the wind. In-situ measurements support the evidence that the radar altimeter is more sensitive to surface scattering. These data could therefore provide a measurement of the intensity of katabatic winds over the continental ice.


1990 ◽  
Vol 36 (123) ◽  
pp. 133-142 ◽  
Author(s):  
F. Remy ◽  
C. Brossier ◽  
J.F. Minster

AbstractWe analyse, above continental ice, the various factors which affect the power return of the Seasat radar altimeter as measured by its Automatic Gain Control (AGC). Corrections of effects due to the AGC loop control are first applied. AGC is then normalized by positioning the half-power point at the middle of the instrument receiving window. This operation is valid for both surface and volume scattering. Over a part of Antarctica between long. 90° and 150°E., the remaining variations of AGC are of the order of 15 dB. Most of these variations occur on a large scale (>100km) and are correlated with the katabatic wind intensity. This indicates that AGC measures either surface roughness of the ice, which is related to wind intensity, or grain-size which could also be dependent on the wind.In-situmeasurements support the evidence that the radar altimeter is more sensitive to surface scattering. These data could therefore provide a measurement of the intensity of katabatic winds over the continental ice.


2020 ◽  
Vol 14 (21) ◽  
pp. 3791-3801
Author(s):  
Thiago E.B. Cunha ◽  
Rodrigo C. de Lamare ◽  
Tadeu N. Ferreira ◽  
Lukas T.N. Landau

Sign in / Sign up

Export Citation Format

Share Document