radar altimeter
Recently Published Documents


TOTAL DOCUMENTS

680
(FIVE YEARS 112)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Vol 14 (1) ◽  
pp. 174
Author(s):  
Hao Zhang ◽  
Chenqing Fan ◽  
Junmin Meng ◽  
Shibao Li ◽  
Lina Sun

The Tiangong-2 space laboratory was launched by China on 15 September 2016, carrying the Interferometric Imaging Radar Altimeter (InIRA), the first of the latest generation of imaging altimeters that can perform imaging and acquire elevation information simultaneously. This paper analyzes the feasibility of using InIRA images to obtain two-dimensional characteristics of oceanic internal solitary waves (ISWs) and information about vertical sea surface fluctuations caused by the propagation of ISWs. The results show that InIRA demonstrates a relatively reliable ability to observe ISWs with high resolution and can identify the fine-scale features of ISWs of different forms. Furthermore, InIRA can observe centimeter-level changes in the Sea Surface Height Anomaly (SSHA) caused by ISWs. The geometric relationship between the sensor’s flight direction and the propagation direction of ISWs does not affect its detection effect. However, the swath width of InIRA is too narrow to fully capture ISW information, and the height accuracy of InIRA height product images is not insufficient to detect the height information of small-scale ISWs. These shortcomings need to be considered in the future development of imaging altimeters to increase their potential for detecting mesoscale phenomena in the ocean.


2021 ◽  
Vol 13 (23) ◽  
pp. 4861
Author(s):  
Bruno Picard ◽  
Nicolas Picot ◽  
Gérald Dibarboure ◽  
Nathalie Steunou

The impact of large atmospheric attenuation events on data quality and availability is a critical aspect for future altimetry missions based on Ka-band altimetry. The SARAL/AltiKa mission and its Ka-band nadir altimeter offer a unique opportunity to assess this impact. Previous publications (Tournadre et al., 2009, 2015) already analyzed the impact of rain on the waveforms at Ka-band and proposed a definition of an elaborate rain flag. This notion tends to give a simpler black and white view of the atmospheric attenuation when the effect on the altimeter measurement is intense. However, in practice, there is a continuum of measurements that may be partially distorted or corrupted by rain events. The present study proposes a wider point of view, directly using the timeseries of the Ka-band altimeter backscattering coefficient for the first time, when previous studies relied on microwave radiometer (MWR) observations or model analyses with coarser resolutions. As guidelines for future Ka-band missions concerning the impact of the atmosphere, the Attenuation CElls Characterization ALgorithm (ACECAL) approach not only provides more representative statistics on rain cells (occurrences, amplitude, size), but also describes the internal structure of the cells. The actual atmospheric attenuation retrieved with ACECAL is about four times larger than the attenuation retrieved from the MWR. At a global scale, 1% of the measurements are affected by an attenuation larger than 23 dB and 10% of the atmospheric attenuation events have a size larger than 40 km. At regional scale, some areas of particular interest for oceanography as Gulf Stream, North Pacific and Brazil currents are more systematically affected compared with global statistics, with atmospheric attenuation up to 8 dB and cell size larger than 25 km when rain occurs. This study also opens some perspectives on the benefits that the community could be drawn from the systematic distribution of the rain cells parameters as secondary products of altimetry missions.


Author(s):  
Hisham Eldardiry ◽  
Faisal Hossain ◽  
Margaret Srinivasan ◽  
Vardis Tsontos

AbstractFor nearly three decades, satellite nadir altimeters have provided essential information to understand, primarily ocean, and also, inland water dynamics. A variety of parameters can be inferred via altimeter measurements, including sea surface height, sea surface wind speeds, significant wave heights, and topography of land, sea ice, and ice sheets. Taking advantage of these parameters with the long record of altimeter data spanning multiple decades has allowed a diverse range of societal applications. As the constellation of altimeter satellites grows, the proven value of the missions to a diverse user community can now be demonstrated by highlighting a selection of verifiable success stories. In this paper, we review selected altimeter success stories which incorporate altimetry data, alone or in conjunction with numerical models or other Earth observations, to solve a key societal problem. First, we define the problem or the key challenge of each use case, and then we articulate the uptake of the successful altimeter-based solution. Our review revealed steady progress by scientific and stakeholder communities in bridging the gap between data availability and their actual uptake to address a variety of applications. Highlighting these altimeter-based success stories can serve to further promote the widespread adoption of future satellite missions such as the Surface Water and Ocean Topography (SWOT) mission scheduled for launch in 2022. Knowledge of the breadth of current utility of altimeter observations can help the scientific community to demonstrate the value in continuing radar altimeter and similar missions, particularly those with expanded capabilities, such as SWOT.


Icarus ◽  
2021 ◽  
pp. 114775
Author(s):  
D.E. Lalich ◽  
V. Poggiali ◽  
A.G. Hayes ◽  
M. Mastrogiuseppe ◽  
M.J. Malaska ◽  
...  
Keyword(s):  

Author(s):  
Bruno Picard ◽  
Nicolas Picot ◽  
Gérald Dibarboure ◽  
Nathalie Steunou

The impact of large atmospheric attenuation events on data quality and availability is a critical aspect for future altimetry missions based on Ka-band altimetry. The SARAL/AltiKa mission and its Ka-band nadir altimeter offer a unique opportunity to assess this impact. Previous publications (Tournadre et al. 2009, 2015) already analyzed the impact of rain on the waveforms at Ka-band and proposed a definition of an elaborate rain flag. This notion tends to give a simpler black and white view of the atmospheric attenuation when the effect on the altimeter measurement is intense. But in practice, there is continuum of measurements that may be partially distorted or corrupted by rain events. The present study proposes a wider point of view , the ACECAL approach providing statistics on rain cells occurrences as well as their amplitude and their size, as guidelines for future Ka-band missions concerning the impact of the atmosphere. At global scale, 1 % of the measurements are affected by an attenuation larger than 23 dB and 10 % of the atmospheric attenuation events have a size larger than 40 km. This study demonstrates that the data quality and availability over some regions of particular interest for oceanography as Gulf Stream, North Pacific and Brazil currents could be affected compared to global statistics. It also opens some perspectives on the benefits that the community could be drawn from the systematic distribution of the rain cells parameters as secondary products of altimetry missions.


2021 ◽  
Author(s):  
Fei Cao ◽  
Anji Wang ◽  
Jianfeng Xu ◽  
Xiaowei Feng ◽  
Chuan He

2021 ◽  
Vol 9 ◽  
Author(s):  
Haihong Wang ◽  
Zhengkai Huang

One of the thorniest problems in altimetry community is retrieving accurate coastal sea surface height, especially in the last several kilometers offshore. It is confirmed in previous studies that decontaminating waveforms is beneficial to improve the quality of coastal SSHs. In this article, we proposed an upgraded strategy for waveform decontamination, including a novel realignment algorithm and gate-wise outlier detector. We validated the new strategy in four test regions using Jason-2 altimeter data. In the validation process, we compared retracked SSHs by 16 retrackers, which include retrackers provided in SGDR (Sensor Geophysical Data Record), ALES (Adaptive Leading Edge Subwaveform), and PISTACH (Prototype Innovant de Système de Traitement pour les Applications Côtières et l’Hydrologie) products. Comparison results verified that retracking the waveforms decontaminated using our new method can greatly improve the SSHs in the coastal region. The 20% threshold retracker (DW-TR20) and the ICE1 retracker (DW-ICE1) based on the decontaminated waveforms outperform other retrackers, especially in 0–4 km zone offshore. DW-TR20 and DW-ICE1 can provide robust SSHs with a consistent accuracy in 0–20 km coastal band and a high correlation (>0.9) with nearby gauge data. To conclude, the upgraded waveform decontamination strategy provides a promising solution for coastal altimetry, which makes it possible to extend reliable observations to the last several kilometers offshore.


2021 ◽  
Vol 263 ◽  
pp. 112534
Author(s):  
Fanny Larue ◽  
Ghislain Picard ◽  
Jérémie Aublanc ◽  
Laurent Arnaud ◽  
Alvaro Robledano-Perez ◽  
...  

2021 ◽  
Vol 15 (8) ◽  
pp. 4099-4115
Author(s):  
Gemma M. Brett ◽  
Daniel Price ◽  
Wolfgang Rack ◽  
Patricia J. Langhorne

Abstract. The outflow of supercooled Ice Shelf Water from the conjoined Ross and McMurdo ice shelf cavity augments fast ice thickness and forms a thick sub-ice platelet layer in McMurdo Sound. Here, we investigate whether the CryoSat-2 satellite radar altimeter can consistently detect the higher freeboard caused by the thicker fast ice combined with the buoyant forcing of a sub-ice platelet layer beneath. Freeboards obtained from CryoSat-2 were compared with 4 years of drill-hole-measured sea ice freeboard, snow depth, and sea ice and sub-ice platelet layer thicknesses in McMurdo Sound in November 2011, 2013, 2017 and 2018. The spatial distribution of higher CryoSat-2 freeboard concurred with the distributions of thicker ice-shelf-influenced fast ice and the sub-ice platelet layer. The mean CryoSat-2 freeboard was 0.07–0.09 m higher over the main path of supercooled Ice Shelf Water outflow, in the centre of the sound, relative to the west and east. In this central region, the mean CryoSat-2-derived ice thickness was 35 % larger than the mean drill-hole-measured fast ice thickness. We attribute this overestimate in satellite-altimeter-obtained ice thickness to the additional buoyant forcing of the sub-ice platelet layer which had a mean thickness of 3.90 m in the centre. We demonstrate the capability of CryoSat-2 to detect higher Ice Shelf Water-influenced fast ice freeboard in McMurdo Sound. Further development of this method could provide a tool to identify regions of ice-shelf-influenced fast ice elsewhere on the Antarctic coastline with adequate information on the snow layer.


Sign in / Sign up

Export Citation Format

Share Document