scholarly journals Characterization of electric field distribution within high voltage press-packed IGBT submodules under condition of repetitive turn-on and turn-off

2018 ◽  
Vol 7 (3.36) ◽  
pp. 127 ◽  
Author(s):  
Nishanthi Sunthrasakaran ◽  
Nor Akmal Mohd Jamail ◽  
Qamarul Ezani Kamarudin ◽  
Sujeetha Gunabalan

The most important aspect influencing the circumstance and characteristics of electrical discharges is the distribution of electric field in the gap of electrodes. The study of discharge performance requires details on the variation of maximum electric field around the electrode. In electrical power system, the insulation of high voltage power system usually subjected with high electric field. The high electric field causes the degradation performance of insulation and electrical breakdown start to occur. Generally, the standard sphere gaps widely used for protective device in electrical power equipment. This project is study about the electric field distribution and current density for different electrode configuration with XLPE barrier. Hence, the different electrode configuration influences the electric field distribution. This project mainly involves the simulation in order to evaluate the maximum electric field for different electrode configuration. Finite Element Method (FEM) software has been used in this project to perform the simulation. This project also discusses the breakdown characteristics of the XLPE. The accurate evaluation of electric field distribution and maximum electric field is an essential for the determination of discharge behavior of high voltage apparatus and components. The degree of uniformity is very low for pointed rod-plane when compared to other two electrode configurations. The non- uniform electric distribution creates electrical stress within the surface of dielectric barrier. As a conclusion, when the gap distance between the electrodes increase the electric field decrease.  


2014 ◽  
Vol 989-994 ◽  
pp. 1273-1277
Author(s):  
Chang Ming Li ◽  
Bao Zhong Han ◽  
Long Zhao ◽  
Chun Peng Yin

Nonlinear insulated materials can uniform electric field distribution in non-uniform electric field. In order to inhibit the electric tree initiation and propagation inside high-voltage cross-linked polyethylene (XLPE) insulated cable, a kind of 220kV high-voltage XLPE insulated cable with new structure is designed by embedding nonlinear shielding layer into XLPE insulation layer of high-voltage cable with traditional structure in this study. Experimental and simulation results indicate that the nonlinear shielding layer can effectively inhibit electrical tree propagation inside the XLPE specimens, and obviously extend the breakdown time caused by electric tree propagation. When the electrical tree propagates into the nonlinear shielding layer sandwiched between insulation layers of cable, the electric field distribution near the tip of electrical tree is obviously improved. These findings prove the feasibility and the effectivity of inhibiting electrical tree propagation inside high-voltage cable by adding nonlinear shielding layer into the insulation layer.


2011 ◽  
Vol 130-134 ◽  
pp. 1413-1417
Author(s):  
You Hua Gao ◽  
Guo Wei Liu ◽  
Yan Bin Li ◽  
You Feng Gao

Numerical calculation model with compound insulation of transient electric field is given. The insulation is more prominent due to complication for voltage applied on valve side winding of the converter transformer. So the simplied structure for electric calculation on the valve side winding of the converter transformer is established. The electric field distribution characteristics on the valve side winding of the converter transformer is analyzed and electric fields in different resistivity and permittivity are calculated under AC high voltage, DC high voltage, AC superimposed DC voltage, polarity reversal voltage. The maximum electric field intensity is calculated and analyzed under kinds of high voltage. Some important influence factors for electric field distribution are also discussed in this paper.


2015 ◽  
Vol 8 (3) ◽  
pp. 582-589 ◽  
Author(s):  
Jaakko O. Nieminen ◽  
Lari M. Koponen ◽  
Risto J. Ilmoniemi

Sign in / Sign up

Export Citation Format

Share Document