scholarly journals A FUZZY DEMATEL BASED SUSTAINABLE DEVELOPMENT INDEX (FDSDI) IN OPEN PIT MINING – A CASE STUDY

2020 ◽  
Vol 35 (1) ◽  
pp. 1-11
Author(s):  
Mohammad Ataei ◽  
Raziye Norouzi Masir
2021 ◽  
Author(s):  
Mariia Kurylo ◽  
Ivan Virshylo

Uranium deposits and resources are considered as an important raw material base for the implementation of scenarios for the green and clean energy transition. Traditionally discussed risks of potential environmental impacts of Uranium projects development could be subdivided by deposit type. Surficial type mineralization connected to the calcretes in shallow paleovalleys or playas has many specific features which might be analysed separately. Case study of Oum Dheroua Uranium project in the Islamic Republic of Mauritania shows an unexpected lower estimation of environmental risks comparatively to conventional Uranium projects despite to open-pit mining technology. The reasons for such estimation, connected to geographic location, the inclusion of Uranium minerals in natural ecosystems and low scale of deposits (both in grade and size sense). Potential by-products (Vanadium and Strontium) are not part of environmental factors assessment.


2013 ◽  
Vol 58 (2) ◽  
pp. 569-578 ◽  
Author(s):  
M.J. Rahimdel ◽  
M. Ataei ◽  
R. Kakaei ◽  
S.H. Hoseinie

Considering the high investment and operation costs, reliability analysis of mining machineries is essential to achieve a lean operation and to prevent the unwanted stoppages. In open pit mining, drilling, as the initial stage of the exploitation operations, has a significant role in the other stages. Failure of drilling machines causes total delay in blasting operation. In this paper, the reliability of drilling operation has been analyzed using the Markov method. The failure and operation data of four heavy rotary drilling machines in Sarcheshme copper mine in Iran have been used as a case study. Failure rate and repair rate of all machines have been calculated using available data. Then, 16 possible operation states have been defined and the probability of being of drilling fleet in each of the states was calculated using Markov theory. The results showed that there was 77.2% probability that all machines in fleet were in operational condition. It means that, considering 360 working days per year, drilling operation will be in a reliable condition in 277.92 days.


2018 ◽  
Vol 119 ◽  
pp. 5-26
Author(s):  
Hans Daduna ◽  
Ruslan Krenzler ◽  
Robert Ritter ◽  
Dietrich Stoyan

Geophysics ◽  
1986 ◽  
Vol 51 (2) ◽  
pp. 302-323 ◽  
Author(s):  
R. P. Young ◽  
J. J. Hill

The application of engineering geophysics to the characterization of rock masses is exemplified through a case study of three phases of a research project into the design of efficient blasting systems in open‐pit mining. Seismic experiments are used before and after mine blasting to monitor the efficiency of explosions in terms of rock fragmentation. Spectral analysis of seismic signals, after they have been used to interrogate rock masses, is used to compute preblast and postblast attenuation and velocity parameters. The results show that fragmentation efficiency of a mine blast and fracture anisotropy of a rock mass can be quantified in terms of three‐dimensional (3-D) attenuation spectra and polar anisotropy diagrams. These seismic data are correlated with the blast design and the energy used by the excavating dragline machine to dig to rock mass. An overview of the seismic attenuation technique and instrumentation used in the project (phases I and II) is given. A case study from phase III highlights the scope and interpretation of the relationship between excavation parameters and seismically characterized blasting efficiency.


Sign in / Sign up

Export Citation Format

Share Document