scholarly journals Rapid Estimation of Earthquake Source and Ground-Motion Parameters for Earthquake Early Warning Using Data from a Single Three-Component Broadband or Strong-Motion Sensor

2012 ◽  
Vol 102 (2) ◽  
pp. 738-750 ◽  
Author(s):  
M. Bose ◽  
T. Heaton ◽  
E. Hauksson
2020 ◽  
Vol 110 (3) ◽  
pp. 1276-1288
Author(s):  
Mitsuyuki Hoshiba

ABSTRACT Earthquake early warning (EEW) systems aim to provide advance warnings of impending strong ground shaking. Many EEW systems are based on a strategy in which precise and rapid estimates of source parameters, such as hypocentral location and moment magnitude (Mw), are used in a ground-motion prediction equation (GMPE) to predict the strength of ground motion. For large earthquakes with long rupture duration, the process is repeated, and the prediction is updated in accordance with the growth of Mw during the ongoing rupture. However, in some regions near the causative fault this approach leads to late warnings, because strong ground motions often occur during earthquake ruptures before Mw can be confirmed. Mw increases monotonically with elapsed time and reaches its maximum at the end of rupture, and ground motion predicted by a GMPE similarly reaches its maximum at the end of rupture, but actual generation of strong motion is earlier than the end of rupture. A time gap between maximum Mw and strong-motion generation is the first factor contributing to late warnings. Because this time gap exists at any point of time during the rupture, a late warning is inherently caused even when the growth of Mw can be monitored in real time. In the near-fault region, a weak subevent can be the main contributor to strong ground motion at a site if the distance from the subevent to the site is small. A contribution from a weaker but nearby subevent early in the rupture is the second factor contributing to late warnings. Thus, an EEW strategy based on rapid estimation of Mw is not suitable for near-fault regions where strong shaking is usually recorded. Real-time monitoring of ground motion provides direct information for real-time prediction for these near-fault locations.


2009 ◽  
Vol 36 (4) ◽  
Author(s):  
Iunio Iervolino ◽  
Massimiliano Giorgio ◽  
Carmine Galasso ◽  
Gaetano Manfredi

2017 ◽  
Vol 33 (3) ◽  
pp. 875-894 ◽  
Author(s):  
Tadahiro Kishida ◽  
Danilo Di Giacinto ◽  
Giuseppe Iaccarino

Numerous time series for small-to-moderate-magnitude (SMM) earthquakes have been recorded in many regions. A uniformly-processed ground-motion database is essential in the development of regional ground-motion models. An automated processing protocol is useful in developing the database for these earthquakes especially when the number of recordings is substantial. This study compares a manual and an automated ground-motion processing methods using SMM earthquakes. The manual method was developed by the Pacific Earthquake Engineering Research Center to build the database of time series and associated ground-motion parameters. The automated protocol was developed to build a database of pseudo-spectral acceleration for the Kiban-Kyoshin network recordings. Two significant differences were observed when the two methods were applied to identical acceleration time series. First, the two methods differed in the criteria for the acceptance or rejection of the time series in the database. Second, they differed in the high-pass corner frequency used to filter noise from the acceleration time series. The influences of these differences were investigated on ground-motion parameters to elucidate the quality of ground-motion database for SMM earthquakes.


Sign in / Sign up

Export Citation Format

Share Document