scholarly journals Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations

Author(s):  
Gary S. Fuis ◽  
Klaus Bauer ◽  
Mark R. Goldman ◽  
Trond Ryberg ◽  
Victoria E. Langenheim ◽  
...  
1995 ◽  
Vol 85 (4) ◽  
pp. 1257-1265
Author(s):  
Craig W. Scrivner ◽  
Donald V. Helmberger

Abstract Warning of imminent ground shaking due to a large earthquake would be useful to a variety of agencies. This kind of ground-motion prediction is possible in southern California for events with magnitude less than 6, where path effects dominate. The 28 June 1991 Sierra Madre earthquake is presented as a test case for this concept. A single-station inversion of the record from the Pasadena station 20 km SW of the epicenter produces reasonable source parameters for the event. With these source parameters and a library of Green's functions calculated for an average southern California crustal model, ground motions can be predicted throughout the region. In particular, since the peak displacement for the Sierra Madre event occurs at Pasadena before ground motion begins at a station near the San Andreas Fault in San Bernardino, ground motions near the San Andreas Fault can be calculated before the seismic energy has propagated into the area. Considering this scenario in the reverse direction, records from a station near an earthquake on the San Andreas Fault could be used to predict ground motions in the metropolitan Los Angeles area. Broadband, high-dynamic-range seismic instruments produce high-quality records for events over a wide magnitude range. Thus, the development of a warning system can be approached in stages, starting with small events. With path effects determined by modeling moderate-size events, work can begin on developing distributed fault models to predict ground motions of great earthquakes.


2021 ◽  
Vol 7 (13) ◽  
pp. eaaz5691
Author(s):  
Kimberly Blisniuk ◽  
Katherine Scharer ◽  
Warren D. Sharp ◽  
Roland Burgmann ◽  
Colin Amos ◽  
...  

The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand.


Sign in / Sign up

Export Citation Format

Share Document