scholarly journals Preliminary work on an early warning and rapid response program for moderate earthquakes

1995 ◽  
Vol 85 (4) ◽  
pp. 1257-1265
Author(s):  
Craig W. Scrivner ◽  
Donald V. Helmberger

Abstract Warning of imminent ground shaking due to a large earthquake would be useful to a variety of agencies. This kind of ground-motion prediction is possible in southern California for events with magnitude less than 6, where path effects dominate. The 28 June 1991 Sierra Madre earthquake is presented as a test case for this concept. A single-station inversion of the record from the Pasadena station 20 km SW of the epicenter produces reasonable source parameters for the event. With these source parameters and a library of Green's functions calculated for an average southern California crustal model, ground motions can be predicted throughout the region. In particular, since the peak displacement for the Sierra Madre event occurs at Pasadena before ground motion begins at a station near the San Andreas Fault in San Bernardino, ground motions near the San Andreas Fault can be calculated before the seismic energy has propagated into the area. Considering this scenario in the reverse direction, records from a station near an earthquake on the San Andreas Fault could be used to predict ground motions in the metropolitan Los Angeles area. Broadband, high-dynamic-range seismic instruments produce high-quality records for events over a wide magnitude range. Thus, the development of a warning system can be approached in stages, starting with small events. With path effects determined by modeling moderate-size events, work can begin on developing distributed fault models to predict ground motions of great earthquakes.

2021 ◽  
Vol 7 (13) ◽  
pp. eaaz5691
Author(s):  
Kimberly Blisniuk ◽  
Katherine Scharer ◽  
Warren D. Sharp ◽  
Roland Burgmann ◽  
Colin Amos ◽  
...  

The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand.


2008 ◽  
Vol 98 (6) ◽  
pp. 2948-2961 ◽  
Author(s):  
C. C. Tsai ◽  
R. D. Catchings ◽  
M. R. Goldman ◽  
M. J. Rymer ◽  
P. Schnurle ◽  
...  

Geosphere ◽  
2020 ◽  
Author(s):  
Katherine A. Guns ◽  
Richard A Bennett ◽  
Joshua C. Spinler ◽  
Sally F. McGill

Assessing fault-slip rates in diffuse plate boundary systems such as the San Andreas fault in southern California is critical both to characterize seis­mic hazards and to understand how different fault strands work together to accommodate plate boundary motion. In places such as San Gorgonio Pass, the geometric complexity of numerous fault strands interacting in a small area adds an extra obstacle to understanding the rupture potential and behavior of each individual fault. To better understand partitioning of fault-slip rates in this region, we build a new set of elastic fault-block models that test 16 different model fault geometries for the area. These models build on previ­ous studies by incorporating updated campaign GPS measurements from the San Bernardino Mountains and Eastern Transverse Ranges into a newly calculated GPS velocity field that has been removed of long- and short-term postseismic displacements from 12 past large-magnitude earthquakes to estimate model fault-slip rates. Using this postseismic-reduced GPS velocity field produces a best- fitting model geometry that resolves the long-standing geologic-geodetic slip-rate discrepancy in the Eastern California shear zone when off-fault deformation is taken into account, yielding a summed slip rate of 7.2 ± 2.8 mm/yr. Our models indicate that two active strands of the San Andreas system in San Gorgonio Pass are needed to produce sufficiently low geodetic dextral slip rates to match geologic observations. Lastly, results suggest that postseismic deformation may have more of a role to play in affecting the loading of faults in southern California than previously thought.


1968 ◽  
Vol 58 (6) ◽  
pp. 1955-1973
Author(s):  
Stewart W. Smith ◽  
Max Wyss

ABSTRACT Immediately following the 1966 Parkfield earthquake a continuing program of fault displacement measurements was undertaken, and several types of instruments were installed in the fault zone to monitor ground motion. In the year subsequent to the earthquake a maximum of at least 20 cm of displacement occurred on a 30 km section of the San Andreas fault, which far exceeded the surficial displacement at the time of the earthquake. The rate of displacement decreased logarithmically during this period in a manner similar to that of the decrease in aftershock activity. After the initial high rate of activity it could be seen that most of the displacement was occurring in 4–6 day epochs of rapid creep following local aftershocks. The variation of fault displacement along the surface trace was measured and shown to be consistent with a vertidal fault surface 44 km long and 14 km deep, along which a shear stress of 2.4 bars was relieved.


Sign in / Sign up

Export Citation Format

Share Document