Seismic magnitudes of underground nuclear explosions

1973 ◽  
Vol 63 (1) ◽  
pp. 105-131 ◽  
Author(s):  
P. W. Basham ◽  
R. B. Horner

abstract Using an Ms computational procedure that minimizes path-propagation effects, and with Ms values found to be empirically independent of test site and detonation medium among consolidated rock explosions, available yield information is employed to illustrate that the seismic scaling of explosions in realistic detonation environments produces teleseismic Rayleigh-wave displacements proportional to the 1.2-power of yield over the range from low yields to greater than three megatons. Ms values independent of network, path, and site can be employed to estimate unknown yields at uncalibrated test sites to within average errors judged to be about 20 per cent. P-wave magnitudes, in the form of a calibrated teleseismic measure of short-period P-wave displacements, show a theoretically supported dependence of displacement on the 1.1-power of yield over the range from 6 kt to 1 mt. Studied explosions separate into two categories: the Nevada Test Site granite explosions, LONG SHOT, the Sahara February 1965 explosion and (by empirical inference) Novaya Zemlya and Eastern Kazakh explosions exhibit P-wave displacements about a factor of 3 greater than explosions of the same yield in tuff, rhyolite, and shale. P-wave magnitudes of explosions are subject to such a diversity of source, propagation, and measurement phenomena that any estimation of unknown yields without a closely controlled site and network calibration can be subject to large errors.

1988 ◽  
Vol 78 (2) ◽  
pp. 873-884
Author(s):  
Otto W. Nuttli

Abstract Lg-wave amplitudes of 30 Novaya Zemlya underground nuclear explosions, as recorded by short-period seismographs in Denmark, Finland, Germany, Norway, Spitsbergen, and Sweden, are used to determine mb(Lg) values. Assuming that the mb(Lg) versus explosion yield relation derived from Nevada Test Site data applies to all continental areas, the yields of the explosions are estimated. They cover a large range of values, from 2.5 to 4900 kt. The largest explosion since April 1976 had an estimated yield of 145 kt. The mb(Lg) values, when subtracted from the mb(P) values, can be used to estimate the mb(P) bias between two test sites. In this way, the mb(P) bias between Novaya Zemlya and the Nevada Test Site is estimated to be 0.20 magnitude units.


1997 ◽  
Vol 87 (6) ◽  
pp. 1563-1575
Author(s):  
Frode Ringdal

Abstract A study of available seismic data shows that all but one of the 42 known underground nuclear explosions at Novaya Zemlya have been detected and located by stations in the global seismic network. During the past 30 years, only one seismic event in this area has been unambiguously classified as an earthquake (1 August 1986, mb = 4.3). Several other small events, most of which are thought to be either chemical explosions or aftereffects of nuclear explosions, have also been detected. Since 1990, a network of sensitive regional arrays has been installed in northern Europe in preparation for the global seismic monitoring network under a comprehensive nuclear test ban treaty (CTBT). This regional network has provided a detection capability for Novaya Zemlya that is shown to be close to mb = 2.5. Three low-magnitude events have been detected and located during this period, as discussed in this article: 31 December 1992 (mb = 2.7), 13 June 1995 (mb = 3.5), and 13 January 1996 (mb = 2.4). To classify the source types of these events has proved very difficult. Thus, even for the mb = 3.5 event in 1995, we have been unable to provide a confident classification of the source as either an earthquake or explosion using the available discriminants. A study of mb magnitude in different frequency bands shows, as expected, that the calculation of mb at regional distances needs to take into account source-scaling effects at high frequencies. Thus, when comparing a 4 to 8 or 8 to 16 Hz filter band to a “teleseismic” 2 to 4 Hz band, the smaller events have, relatively speaking, significantly more high-frequency energy (up to 0.5 mb units) than the larger events. This suggests that a P-wave spectral magnitude scale might be appropriate. The problem of accurately locating small events using a sparse array network is addressed using the 13 January 1996 event, which was detected by only two arrays, as an illustrative example. Our analysis demonstrates the importance of using accurately calibrated regional travel-time curves and, at the same time, illustrates how array processing can be used to identify an interfering phase from a local disturbance, thereby avoiding location errors due to erroneous phase readings.


1982 ◽  
Vol 72 (4) ◽  
pp. 1351-1366
Author(s):  
J. R. Murphy ◽  
T. J. Bennett

abstract A new seismic discriminant based on spectral differences of regional phases from earthquakes and explosions recorded at a single station has been tested and found to work remarkably well. The test data consisted of a well-constrained set of 30 Nevada Test Site (NTS) explosions and 21 earthquakes located within about 100 km of NTS which were recorded on short-period seismographs at the Tonto Forest Observatory in central Arizona at an epicentral distance averaging 530 km. The events in the data set cover a magnitude range from 3.3 to 4.8 (mb) for which Pn, Pg, and Lg phases have been analyzed. We found that, although Lg phases from earthquakes are typically more prominent than for explosions with comparable P-wave amplitude levels, simple time-domain Lg/P amplitude ratios do not result in a separation of the earthquake and explosion samples consistent enough to provide reliable discrimination. However, spectral analyses of the data over the frequency band from 0.5 to 5.0 Hz revealed significant differences in the spectra of certain regional phases which proved to be a quite reliable discriminant. In particular, both the Pg and Lg spectra from earthquakes have been found to be richer in high-frequency content than corresponding explosion spectra. A discriminant measure, defined as the ratio of average Lg spectral amplitude level in the 0.5- to 1.0-Hz passband to that in the 2.0- to 4.0-Hz passband, provides good separation of earthquake and explosion populations.


1974 ◽  
Vol 64 (4) ◽  
pp. 1275-1293
Author(s):  
Ola Dahlman

abstract A model is presented for the simultaneous detemination of the relative variation in transmission properties to different stations and of the relative differences between the seismic sources for closely spaced underground nuclear explosions recorded by a fixed seismological station network. The model is applied to short-period data reported from 24 globally distributed stations from 12 underground nuclear explosions with known yields at Nevada Test Site. The obtained transmission functions vary within a factor of 10 between the different stations and show a weak decrease with epicenter distance and little correlation with the Gutenberg amplitude-distance curve. The relative source functions for 10 explosions in tuff and rhyolite, with yields in the range 16 to 1,200 kt, are with good correlation proportional to explosion yield to 0.9. Two theoretical source-function models, one by Haskell (1967) and one by Mueller and Murphy (1971a), are compared with each other and they agree well for frequencies around 1 Hz and for yields in the range 3 to 300 kt. The Haskell model for tuff is modified to be more compatible with the models for salt, granite and alluvium. The Haskell model predicts stronger variation of the source functions with frequency and yield than the Mueller-Murphy model. The observed relative source functions are compared with the theoretical source functions obtained from the two source models. The agreement is fairly good but the relative decrease of the source functions at yields above 300 kt predicted by the theoretical models is not observed.


1984 ◽  
Vol 74 (5) ◽  
pp. 1863-1882
Author(s):  
J. T. Bullitt ◽  
V. F. Cormier

Abstract A comparison has been made of the relative scatter of classical mb and alternative measures of P-wave energy from underground nuclear explosions at test sites in East Kazakh, USSR. The scatter of the energy measures is observed in teleseismic arrays of short-period Global Digital Seismic Network (GDSN) stations and the local broadband array at Graefenburg, Federal Republic of Germany. Four measures of A in log(A/T), spectral magnitudes, peak velocity, rms coda, and integrated velocity-squared are compared. The measures are constructed to be in equivalent units of the flux rate of radiated elastic energy. All measures are assumed to have the same slope in a linear regression of log(yield) versus log(measure). Three independent tests were made of the stability of the yield estimators: the scatter of the measures using: (1) Graefenburg array data; (2) GDSN data normalized to a reference station; and (3) GDSN data normalized to a reference event. The differences among the standard deviations are small (≦ 0.1 mb units), making it difficult using a small data base to conclude whether the performance of one estimator is significantly better than another. The relative order in the performance of the yield estimators, however, is preserved in each of the three tests. The coda measure is the most stable, followed by the spectral and time-domain A/T measures. The relations observed at Graefenburg between (1) the amplitude of direct P versus P coda, (2) the apparent azimuth of direct P, and (3) complexity, suggest that amplitude variations across an array are a product of scattering along the entire ray path as well as scattering, focusing, and defocusing localized in the lithosphere beneath the source and receiver sites.


Sign in / Sign up

Export Citation Format

Share Document