underground nuclear explosions
Recently Published Documents


TOTAL DOCUMENTS

292
(FIVE YEARS 32)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
pp. 47-52
Author(s):  
K. S. Nepeina ◽  
V. A. An

During the Cold War of the 20th century and the classification of information between the largest nuclear states the Soviet Union (USSR) and the United States of America (USA), data on the registration of nuclear explosions were not published in the reports of the Unitied Seismic Observation Service. However, underground nuclear explosions were recorded. For example, underground nuclear explosions, produced by the United States on Amchitka island, were recorded by more than 30 stations of the USSR at epicentral distances Δ ~ 8–160°. Tests at the Nevada Test Site were found especially well throughout the USSR seismic stations. As a result of processing the bulletins of registered events, checking the values with the time service, the registration parameters for the Soviet stations were destroyed. However, thanks to an employee of the laboratory 5-s of the Institute of Physics of the Earth named after O.Yu. Schmidt of the USSR Academy of Sciences Kh.D. Rubinstein is kept at the Institute for the Dynamics of Geospheres of the Russian Academy of Sciences named after Academician M.A. Sadovsky. Only after 1985 messages from some seismic stations of the former USSR began to be published in the operational reports of the Geophysical Service of the Russian Academy of Sciences. This material is intended to publish that layer of invaluable information on the registration of underground nuclear explosions, made by the United States, which has been so carefully created for decades, and has not been published anywhere at the moment.


2021 ◽  
Vol 237 ◽  
pp. 106715
Author(s):  
C. Johnson ◽  
B. Milbrath ◽  
J. Lowrey ◽  
T. Alexander ◽  
J. Fast ◽  
...  

Author(s):  
Yunwei Sun ◽  
Charles Carrigan ◽  
William Cassata ◽  
Yue Hao ◽  
Souheil Ezzedine ◽  
...  

AbstractIsotopic ratios of radioactive xenons sampled in the subsurface and atmosphere can be used to detect underground nuclear explosions (UNEs) and civilian nuclear reactors. Disparities in the half-lives of the radioactive decay chains are principally responsible for time-dependent concentrations of xenon isotopes. Contrasting timescales, combined with modern detection capabilities, make the xenon isotopic family a desirable surrogate for UNE detection. However, without including the physical details of post-detonation cavity changes that affect radioxenon evolution and subsurface transport, a UNE is treated as an idealized system that is both closed and well mixed for estimating xenon isotopic ratios and their correlations so that the spatially dependent behavior of xenon production, cavity leakage, and transport are overlooked. In this paper, we developed a multi-compartment model with radioactive decay and interactions between compartments. The model does not require the detailed domain geometry and parameterization that is normally needed by high-fidelity computer simulations, but can represent nuclide evolution within a compartment and migration among compartments under certain conditions. The closed-form solution to all nuclides in the series 131–136 is derived using analytical singular-value decomposition. The solution is further used to express xenon ratios as functions of time and compartment position.


Author(s):  
Martin B. Kalinowski ◽  
Pouneh Tayyebi ◽  
Michael Lechermann ◽  
Halit Tatlisu

AbstractTo monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), the International Monitoring System (IMS) is being established which will include 40 sensor systems for atmospheric xenon radioactivity. Radioactive isotopes of the noble gas xenon provide the most likely observable radioactive signatures of underground nuclear explosions. These isotopes are frequently detected by IMS noble gas systems as a result of normal operational releases from different types of nuclear facilities including nuclear power plants (NPPs), medical isotope production facilities (MIPFs), and nuclear research reactors (NRRs). Improved knowledge of the contribution of different emission sources on IMS observations strengthens the screening of radioxenon measurements to exclude observations not relevant to emissions from a nuclear explosion. The contribution of NPPs and MIPFs to the global radioxenon emission inventory is fairly well understood. NRRs have yet to be systematically assessed. This paper is the first attempt to assess the total emission inventory of NRRs expressed as annual total discharges. The results can enhance understanding of those sources most likely to impact IMS background observations and to guide future studies on contributions to IMS station background.


Sign in / Sign up

Export Citation Format

Share Document