A numerical study of peak ground motion scaling

1981 ◽  
Vol 71 (6) ◽  
pp. 1963-1979
Author(s):  
Robert B. Herrmann ◽  
Michael J. Goertz

Abstract Strong ground motion scaling relations for the Central United States cannot be obtained by applying regression analysis to the existing, sparse data base. Adaptation of the corresponding Western United States data base must be done carefully because the important problems of differences in regional anelastic attenuation, magnitude scales, and earthquake source physics still have to be resolved. Until this is done, empirical relations have to be adapted, but some test of their validity must be made. Since the Central United States data set is not a valid test, synthetic seismograms can be used to test some of the assumptions and results. The Central United States ground motion scaling problem differs from usual experience in that the nature of ground motion scaling at distances greater than 100 km from the source is of utmost importance. Numerical techniques are used to generate SH time histories in a four layer Central United States earth model. A study of model parameters indicates that simple deductions based on the scaling of pulses are applicable to the high-frequency surface wave trains at large distances and that spatial attenuation for these waves should be of the form R − 5 / 6 exp (−γR) . An attempt to apply the results of the numerical study to the existing Central United States data base is not too impressive because of the limited frequency range of the synthetics and lack of detailed knowledge about earth structure in the Mississippi embayment, from which the actual data were obtained.

2017 ◽  
Vol 199 ◽  
pp. 844-849
Author(s):  
Berat Feyza Soysal ◽  
Bekir Özer Ay ◽  
Yalin Arici

1976 ◽  
Vol 66 (3) ◽  
pp. 743-751
Author(s):  
Indra N. Gupta ◽  
Otto W. Nuttli

abstract Attenuation of ground motion in the central United States has to be determined principally using the Modified Mercalli (MM) intensity observations because of the absence of instrumental strong ground-motion data. Nuttli's previous studies of Mississippi Valley earthquakes indicate that higher-mode surface waves produce the largest ground motion except possibly in the near-field region. Particle velocity rather than acceleration correlates directly with intensity and the coefficient of anelastic attenuation has an average value of 0.10 per degree. Using data from isoseismals of the November 9, 1968, southern Illinois and the December 16, 1811, New Madrid, Missouri earthquakes and assuming a linear relationship between log(A/T) and MM intensity, attenuation is expressed by the equation, valid for I(R) ≧IV (MM), I ( R ) = I 0 + 3.7 − 0.0011 R − 2.7 log ⁡ R ; for R ≧ 20 k m where R is the epicentral distance in kilometers. This relationship shows fairly good agreement with isoseismals of many large earthquakes in the central United States and may therefore be useful in providing realistic estimates of spatial attenuation and hence of design earthquakes for a given site. It can also be sometimes useful in estimating the epicentral intensity of an earthquake whose maximum intensity is not reliably known.


Sign in / Sign up

Export Citation Format

Share Document