scholarly journals Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion

1982 ◽  
Vol 72 (4) ◽  
pp. 1185-1194 ◽  
Author(s):  
Ichiro Nakanishi ◽  
Don L. Anderson

abstract We have determined the worldwide distribution of group velocity of mantle Rayleigh waves for periods between 100 and 300 sec without assuming any regionalization. Group slowness 1/u(θ, φ) is expressed by spherical harmonics, and the coefficients, up to angular order 7, have been determined from travel times of Rayleigh waves by a least-squares method. From these, u(θ, φ) has been synthesized. Since we cannot obtain information about the odd terms of the expansion from one circuit measurements around the world, we have used group velocities of mainly R2 and R3. The overall pattern of u(θ, φ) for periods between 100 and 200 sec is consistent with results of previous pure-path and regional studies. Group velocities for tectonically active regions are low, and those of the shields and the northwestern Pacific are high.

1994 ◽  
Vol 37 (3) ◽  
Author(s):  
R. G. North ◽  
C. R. D. Woodgold

An algorithm for the automatic detection and association of surface waves has been developed and tested over an 18 month interval on broad band data from the Yellowknife array (YKA). The detection algorithm uses a conventional STA/LTA scheme on data that have been narrow band filtered at 20 s periods and a test is then applied to identify dispersion. An average of 9 surface waves are detected daily using this technique. Beamforming is applied to determine the arrival azimuth; at a nonarray station this could be provided by poIarization analysis. The detected surface waves are associated daily with the events located by the short period array at Yellowknife, and later with the events listed in the USGS NEIC Monthly Summaries. Association requires matching both arrival time and azimuth of the Rayleigh waves. Regional calibration of group velocity and azimuth is required. . Large variations in both group velocity and azimuth corrections were found, as an example, signals from events in Fiji Tonga arrive with apparent group velocities of 2.9 3.5 krn/s and azimuths from 5 to + 40 degrees clockwise from true (great circle) azimuth, whereas signals from Kuriles Kamchatka have velocities of 2.4 2.9 km/s and azimuths off by 35 to 0 degrees. After applying the regional corrections, surface waves are considered associated if the arrival time matches to within 0.25 km/s in apparent group velocity and the azimuth is within 30 degrees of the median expected. Over the 18 month period studied, 32% of the automatically detected surface waves were associated with events located by the Yellowknife short period array, and 34% (1591) with NEIC events; there is about 70% overlap between the two sets of events. Had the automatic detections been reported to the USGS, YKA would have ranked second (after LZH) in terms of numbers of associated surface waves for the study period of April 1991 to September 1992.


1975 ◽  
Vol 65 (2) ◽  
pp. 507-521
Author(s):  
Harsh K. Gupta ◽  
Kazuo Hamada

abstract Group velocities for Rayleigh waves extending to 140-sec-period range have been determined for 10 paths in the Indonesia-Philippine region using moving window analysis. The group velocities for five of these paths have been determined from the vertical as well as the longitudinal components and the values obtained from the two components tally with each other. It has also been possible to obtain Love-wave group velocities for three of these paths. On the basis of group-velocity values and regions covered, the observed Rayleigh-wave group-velocity data could be divided into three groups. The first group includes data for paths mostly confined to deep ocean and the observed data could be explained by standard oceanic models such as 8099. The second group includes data for paths lying partially within seismically active regions and models ARC-1 and ALRDG-9 fit with these data. The third group shows still lower group velocities for paths entirely confined to seismically active regions. The shear velocities inferred from Love-wave dispersion data are higher than those inferred from Rayleigh-wave data. In general, the group velocities varied greatly within small distances even in the longer period range, indicating strong lateral heterogeneities in the mantle.


2020 ◽  
Vol 24 (1) ◽  
pp. 91-95
Author(s):  
Chanjun Jiang ◽  
Youxue Wang ◽  
Gaofu Zeng

Based upon the synthetic Rayleigh wave at different epicentral distances and real earthquake Rayleigh wave, S transform is used to measure their group velocities, compared with the Multiple Filter Technique (MFT) which is the most commonly used method for group-velocity measurements. When the period is greater than 15 s, especially than 40 s, S transform has higher accuracy than MFT at all epicenter distances. When the period is less than or equal to 15 s, the accuracy of S transform is lower than that of MFT at epicentral distances of 1000 km and 8000 km (especially 8000 km), and the accuracy of such two methods is similar at the other epicentral distances. On the whole, S transform is more accurate than MFT. Furthermore, MFT is dominantly dependent on the value of the Gaussian filter parameter α, but S transform is self-adaptive. Therefore, S transform is a more stable and accurate method than MFT for group velocity measurement of earthquake Rayleigh waves.


1981 ◽  
Vol 71 (1) ◽  
pp. 263-274
Author(s):  
Indra N. Gupta ◽  
J. A. Burnetti

abstract Short-period, vertical-component records at the WWSSN station, Kabul for 13 earthquakes and 8 nuclear explosions occurring within a region of efficient propagation of Lg are examined to explore the possibility of using ratios of amplitudes in different group velocity windows as a discriminant. Each seismogram is divided into 10 windows with boundaries representing Pn and group velocities of 6.0, 5.0, 4.5, 4.0, 3.8, 3.6, 3.4, 3.2, 3.0, and 2.8 km/sec. The first three windows include crustal phases Pn, Pg, and Sn, respectively, whereas the six windows from 4.0 to 2.8 km/sec encompass the expected group velocity of higher mode Rayleigh waves that include Lg. The ratio of the maximum amplitude before the arrival of Sn to the maximum amplitude thereafter is significantly larger for explosions than for earthquakes and provides the largest separation between earthquake and explosion populations. Considerable separation is also shown by amplitude ratios Pn/Lg and Pn/Pg. Amplitude ratios based on earlier- and later-arriving Lg phases and the amplitude ratio Sn/Lg show insignificant discrimination. The ratio (maximum before Sn)/(maximum after Sn) is expected to be a useful regional discriminant for events in the Western USSR.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1162-1167 ◽  
Author(s):  
Joseph B. Molyneux ◽  
Douglas R. Schmitt

Elastic‐wave velocities are often determined by picking the time of a certain feature of a propagating pulse, such as the first amplitude maximum. However, attenuation and dispersion conspire to change the shape of a propagating wave, making determination of a physically meaningful velocity problematic. As a consequence, the velocities so determined are not necessarily representative of the material’s intrinsic wave phase and group velocities. These phase and group velocities are found experimentally in a highly attenuating medium consisting of glycerol‐saturated, unconsolidated, random packs of glass beads and quartz sand. Our results show that the quality factor Q varies between 2 and 6 over the useful frequency band in these experiments from ∼200 to 600 kHz. The fundamental velocities are compared to more common and simple velocity estimates. In general, the simpler methods estimate the group velocity at the predominant frequency with a 3% discrepancy but are in poor agreement with the corresponding phase velocity. Wave velocities determined from the time at which the pulse is first detected (signal velocity) differ from the predominant group velocity by up to 12%. At best, the onset wave velocity arguably provides a lower bound for the high‐frequency limit of the phase velocity in a material where wave velocity increases with frequency. Each method of time picking, however, is self‐consistent, as indicated by the high quality of linear regressions of observed arrival times versus propagation distance.


2020 ◽  
Author(s):  
Yuri Fialko

Abstract Strength of the upper brittle part of the Earth's lithosphere controls deformation styles in tectonically active regions, surface topography, seismicity, and the occurrence of plate tectonics, yet it remains one of the least constrained and most debated quantities in geophysics. Seismic data (in particular, earthquake focal mechanisms) have been used to infer orientation of the principal stress axes. Here I show that the focal mechanism data can be combined with information from precise earthquake locations to place robust constraints not only on the orientation, but also on the magnitude of absolute stress at depth. The proposed method uses machine learning to identify quasi-linear clusters of seismicity associated with active faults. A distribution of the relative attitudes of conjugate faults carries information about the amplitude and spatial heterogeneity of the deviatoric stress and frictional strength in the seismogenic zone. The observed diversity of dihedral angles between conjugate faults in the Ridgecrest (California, USA) area that hosted a recent sequence of strong earthquakes suggests the effective coefficient of friction of 0.4-0.6, and depth-averaged shear stresses on the order of 25-40 MPa, intermediate between predictions of the "strong" and "weak" fault theories.


1953 ◽  
Vol 43 (1) ◽  
pp. 17-34 ◽  
Author(s):  
N. A. Haskell

abstract A matrix formalism developed by W. T. Thomson is used to obtain the phase velocity dispersion equations for elastic surface waves of Rayleigh and Love type on multilayered solid media. The method is used to compute phase and group velocities of Rayleigh waves for two assumed three-layer models and one two-layer model of the earth's crust in the continents. The computed group velocity curves are compared with published values of the group velocities at various frequencies of Rayleigh waves over continental paths. The scatter of the observed values is larger than the difference between the three computed curves. It is believed that not all of this scatter is due to observational errors, but probably represents a real horizontal heterogeneity of the continental crusts.


Sign in / Sign up

Export Citation Format

Share Document