Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California

1984 ◽  
Vol 74 (2) ◽  
pp. 439-458 ◽  
Author(s):  
William H. Bakun

Abstract Onscale seismograms recorded at stations in the U.S. Geological Survey's (USGS) central California seismic network (CALNET) have been used to estimate the seismic moment M0 and local magnitude ML for earthquakes of 1 ≦ ML ≦ 4 located on the San Juan Bautista and Parkfield sections of the San Andreas fault, the Coyote Lake section of the Calaveras fault, the Sargent fault, and near Livermore. These data, together with M0 and ML estimates for 4 ≦ ML ≦ 6 earthquakes in these areas, cannot be fit with a single linear log M0-versus-ML relation. Rather, the data are consistent with log M0 = 1.5 ML + 16 for 3 ≲ ML ≲ 6, with log M0 = 1.2 ML + 17 for 1 1/2 ≲ ML ≲ 3 1/2 and with a slope of ⅔ to 1 fro 1/2 ≲ ML ≲ 1 1/2. Whereas USGS coda duration magnitude MD is consistent with ML for 1 1/2 ≲ ML ≲ 3¼, MD is larger than ML at ML ≲ 1 1/2 and smaller than ML at ML ≳ 3¼. Log M0 can be estimated to a precision of 0.2 for 1 ≦ MD ≦ 3 1/2 earthquakes in central California by applying log M0 = 1.2 MD + 17 to the MD that have been routinely published by the USGS.

1981 ◽  
Vol 71 (5) ◽  
pp. 1607-1624
Author(s):  
M. Lisowski ◽  
W. H. Prescott

abstract Periodic measurements of fault-crossing networks with a side length of 1 to 3 km are being made to monitor deformation across fault zones in California. The distance measurements are made with a Hewlett-Packard 3800 or 3808 electronic distance meter and have a maximum standard deviation of 5 mm. Deformation measured within networks that span the San Juan Bautista-Cholame segment of the San Andreas fault in central California yields slip rates similar to those measured across a 100- to 300-m-wide zone by repeated alinement array surveys. Fault slip rates increase from near 0 to 32 mm/yr between San Juan Bautista and Bitterwater Valley in step-like increments. From Bitterwater to Slack Canyon slip rates vary between 26 and 32 mm/yr. Slip rates decrease southwestward of Slack Canyon to 3 mm/yr at Cholame. In contrast, Geodolite measurements of deformation across a 20-km-wide zone are consistent from San Juan Bautista to Slack Canyon and imply a 32 ± 2 mm/yr slip rate. Deformation across the Calaveras fault accounts for the difference between Geodolite and near-fault slip rates between San Juan Bautista and Bear Valley, although the zone of deformation is wider than 2.5 km just south of Hollister. At Bear Valley, measurements of a short-range network crossing the Paicines fault imply a slip rate of 10 ± 3 mm/yr during the period 1976 to 1979. From Slack Canyon to Cholame, Geodolite measurements show a constant decrease in the rate of shallow slip.


1994 ◽  
Vol 99 (B3) ◽  
pp. 4559-4565 ◽  
Author(s):  
M. T. Gladwin ◽  
R. L. Gwyther ◽  
R. H. G. Hart ◽  
K. S. Breckenridge

1980 ◽  
Vol 70 (4) ◽  
pp. 1181-1197
Author(s):  
William H. Bakun

abstract Cumulative seismic moment ΣM0 for earthquake on 50-km-long creeping section of the Calaveras Fault from near Mount Hamilton southeast to San Felipe Lake correlates with mapped fault-trace characteristics. In general, ΣM0 is lower at the left-stepping offset in the trace at the south end of Anderson Lake and along linear segments of the fault than near right-stepping offsets and bends in the trace and intersections of the Calaveras with other faults. Rupture expansion for the August 6, 1979 Coyote Lake sequence main shock, 10 km NNE of Gilroy, California, was unilateral to the southeast (Archuleta, 1979) away from the right-stepping offset in the fault trace near its epicenter. Rupture expansion for the two felt shocks (ML 4.2 and ML 3.9) on August 29, 1978 located 112 km apart near Halls Valley east of San Jose was unilateral for each away from the other, suggesting the existence of a rupture-expansion blocking discontinuity between them. The correlations of seismic activity and fault-trace characteristics are similar to those for shocks along the creeping section of the San Andreas Fault in central California and suggest that the specific “stuck” and “creeping” patch model of Bakun et al. (1980) developed for the San Andreas is applicable to the creeping Calaveras Fault as well. Cumulative seismic moment (January 1, 1969 to August 6, 1979) within the 16-km-long 1979 Coyote Lake sequence aftershock zone was less than that near the fault-trace discontinuities at its ends. Microearthquakes along the Calaveras Fault near the Coyote Lake aftershock zone increased before the sequence beginning with a cluster on June 22, 1978 near the southeast end of the aftershock zone. A similar seismicity pattern preceded the August 29, 1978 shocks and the ML 4.5 May 8, 1979 shock near Halls Valley.


2014 ◽  
Vol 119 (12) ◽  
pp. 8827-8844 ◽  
Author(s):  
Taka'aki Taira ◽  
Roland Bürgmann ◽  
Robert M. Nadeau ◽  
Douglas S. Dreger

Sign in / Sign up

Export Citation Format

Share Document