Earth, Partial, and Reduced Gravity Experiments and Numerical Work on Propane-Oxygen Cool Flames at Sub-atmospheric Pressures

2021 ◽  
Author(s):  
Michael Robert Foster
1998 ◽  
Author(s):  
E. J. Metzger ◽  
Robert C. Rhodes ◽  
Dong S. Ko ◽  
Harley E. Hurlburt

2018 ◽  
Vol 232 ◽  
pp. 02005
Author(s):  
Bin Li ◽  
Song Guo ◽  
Wei Li ◽  
Deman Zhang ◽  
Nei Wang

Comprehensive characteristics of a pneumatic underwater launching system were analyzed and the simulation was carried out by simulink. The components of the pneumatic underwater launching system were introduced, and the theoretical calculation formula for the system was derived. A rated pressure of 3.5MPa and 5MPa was offered in the numerical work. Analyses in different piston height show good behaviors: Proper increase of piston-initial accumulator pressure is beneficial to reduce hydrodynamic noise, choose the appropriate pressure of accumulator. The hydrodynamic noise of the system can be significantly reduced by optimizing the structure of the double-acting cylinder, increasing the height of the piston and improving the structure of the piston.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

The present numerical work studies the flow field in subsonic axial compressor stator passages for: (a) preceding rotor sweep (b) preceding rotor re-staggering (three stagger angle changes: 0°, +3° and +5°); and (c) stator sweeping (two 20° forward sweep schemes). The following are the motives for the study: at the off-design conditions, compressor rotors are re-staggered to alleviate the stage mismatching by adjusting the rows to the operating flow incidence. Fundamental to this is the understanding of the effects of rotor re-staggering on the downstream component. Secondly, sweeping the rotor stages alters the axial distance between the successive rotor-stator stages and necessitates that the stator vanes must also be swept. To the best of the author’s knowledge, stator sweeping to suit such scenarios has not been reported. The computational model for the study utilizes well resolved hexahedral grids. A commercial CFD package ANSYS® CFX 11.0 was used with standard k-ω turbulence model for the simulations. CFD results were well validated with experiments. The following observations were made: (1) When the rotor passage is closed by re-staggering, with the same mass flow rate and the same stator passage area, stators were subjected to negative incidences. (2) Effect of stator sweeping on the upstream rotor flow field is insignificant. Comparison of total pressure rise carried by the downstream stators suggests that an appropriate redesign of stator is essential to match with the swept rotors. (3) While sweeping the stator is not recommended, axial sweeping is preferable over true sweeping when it is necessary.


Sign in / Sign up

Export Citation Format

Share Document