scholarly journals The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Author(s):  
Mariusz Plaszczyk

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T*M given by v → g(v, –) between the tangent TM and the cotangent T*M bundles of M. In the present note first we generalize this isomorphism to the one J<sup>r</sup>TM → J<sup>r</sup>T*M between the r-th order prolongation J<sup>r</sup>TM of tangent TM and the r-th order prolongation J<sup>r</sup>T*M of cotangent T*M bundles of M. Further we describe all base preserving vector bundle maps D<sub>M</sub>(g) : J<sup>r</sup>TM → J<sup>r</sup>T*M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.

Author(s):  
Mariusz Plaszczyk

AbstractIf (M,g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T* M given by v → g(v,−) between the tangent TM and the cotangent T* M bundles of M. In the present note first we generalize this isomorphism to the one J


Author(s):  
Jan Kurek ◽  
Włodzimierz M. Mikulski

AbstractIf (M,g) is a Riemannian manifold, we have the well-known base preserving vector bundle isomorphism TM ≅ T


1968 ◽  
Vol 32 ◽  
pp. 67-108 ◽  
Author(s):  
Akihiko Morimoto

The purpose of the present paper is to study the prolongations of G-structures on a manifold M to its tangent bundle T(M), G being a Lie subgroup of GL(n,R) with n = dim M. Recently, K. Yano and S. Kobayashi [9] studied the prolongations of tensor fields on M to T(M) and they proposed the following question: Is it possible to associate with each G-structure on M a naturally induced G-structure on T(M), where G′ is a certain subgroup of GL(2n,R)? In this paper we give an answer to this question and we shall show that the prolongations of some special tensor fields by Yano-Kobayashi — for instance, the prolongations of almost complex structures — are derived naturally by our prolongations of the classical G-structures. On the other hand, S. Sasaki [5] studied a prolongation of Riemannian metrics on M to a Riemannian metric on T(M), while the prolongation of a (positive definite) Riemannian metric due to Yano-Kobayashi is always pseudo-Riemannian on T(M) but never Riemannian. We shall clarify the circumstances for this difference and give the reason why the one is positive definite Riemannian and the other is not.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1802
Author(s):  
Alex Iosevich ◽  
Krystal Taylor ◽  
Ignacio Uriarte-Tuero

Let M be a compact d-dimensional Riemannian manifold without a boundary. Given a compact set E⊂M, we study the set of distances from the set E to a fixed point x∈E. This set is Δρx(E)={ρ(x,y):y∈E}, where ρ is the Riemannian metric on M. We prove that if the Hausdorff dimension of E is greater than d+12, then there exist many x∈E such that the Lebesgue measure of Δρx(E) is positive. This result was previously established by Peres and Schlag in the Euclidean setting. We give a simple proof of the Peres–Schlag result and generalize it to a wide range of distance type functions. Moreover, we extend our result to the setting of chains studied in our previous work and obtain a pinned estimate in this context.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450041 ◽  
Author(s):  
O. C. Stoica

On a Riemannian or a semi-Riemannian manifold, the metric determines invariants like the Levi-Civita connection and the Riemann curvature. If the metric becomes degenerate (as in singular semi-Riemannian geometry), these constructions no longer work, because they are based on the inverse of the metric, and on related operations like the contraction between covariant indices. In this paper, we develop the geometry of singular semi-Riemannian manifolds. First, we introduce an invariant and canonical contraction between covariant indices, applicable even for degenerate metrics. This contraction applies to a special type of tensor fields, which are radical-annihilator in the contracted indices. Then, we use this contraction and the Koszul form to define the covariant derivative for radical-annihilator indices of covariant tensor fields, on a class of singular semi-Riemannian manifolds named radical-stationary. We use this covariant derivative to construct the Riemann curvature, and show that on a class of singular semi-Riemannian manifolds, named semi-regular, the Riemann curvature is smooth. We apply these results to construct a version of Einstein's tensor whose density of weight 2 remains smooth even in the presence of semi-regular singularities. We can thus write a densitized version of Einstein's equation, which is smooth, and which is equivalent to the standard Einstein equation if the metric is non-degenerate.


2021 ◽  
Author(s):  
Hany Atia ◽  
Hassan Abu Donia ◽  
Hala Emam

Abstract In this paper we have studied the essential self-adjointness for the differential operator of the form: T=Δ⁸+V, on sections of a Hermitian vector bundle over a complete Riemannian manifold, with the potential V satisfying a bound from below by a non-positive function depending on the distance from a point. We give sufficient condition for the essential self-adjointness of such differential operator on Riemannian Manifolds.


2020 ◽  
pp. 117-120
Author(s):  
E.D. Rodionov ◽  
O.P. Khromova

One of the important problems of Riemannian geometry is the problem of establishing connections between curvature and the topology of a Riemannian manifold, and, in particular, the influence of the sign of sectional curvature on the topological structure of a Riemannian manifold. Of particular importance in these studies is the question of the influence of d-pinching of Riemannian metrics of positive sectional curvature on the geometric and topological structure of the Riemannian manifold. This question is most studied for the homogeneous Riemannian case. In this direction, the classification of homogeneous Riemannian manifolds of positive sectional curvature, obtained by M. Berger, N. Wallach, L. Bergeri, as well as a number of results on d- pinching of homogeneous Riemannian metrics of positive sectional curvature, is well known. In this paper, we investigate Riemannian manifolds with metric connection being a connection with vectorial torsion. The Levi-Civita connection falls into this class of connections. Although the curvature tensor of these connections does not possess the symmetries of the Levi-Civita connection curvature tensor, it seems possible to determine sectional curvature. This paper studies the d-pinch function of the sectional curvature of a compact connected Lie group G with a biinvariant Riemannian metric and a connection with vectorial torsion. It is proved that it takes the values d(||V ||)∈(0,1].


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2543-2554
Author(s):  
E. Peyghan ◽  
F. Firuzi ◽  
U.C. De

Starting from the g-natural Riemannian metric G on the tangent bundle TM of a Riemannian manifold (M,g), we construct a family of the Golden Riemannian structures ? on the tangent bundle (TM,G). Then we investigate the integrability of such Golden Riemannian structures on the tangent bundle TM and show that there is a direct correlation between the locally decomposable property of (TM,?,G) and the locally flatness of manifold (M,g).


Author(s):  
Michael Kachelriess

This chapter introduces tensor fields, covariant derivatives and the geodesic equation on a (pseudo-) Riemannian manifold. It discusses how symmetries of a general space-time can be found from the Killing equation, and how the existence of Killing vector fields is connected to global conservation laws.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


Sign in / Sign up

Export Citation Format

Share Document