Essential Self-adjointness of Differential Operators on Riemannian Manifolds

Author(s):  
Hany Atia ◽  
Hassan Abu Donia ◽  
Hala Emam

Abstract In this paper we have studied the essential self-adjointness for the differential operator of the form: T=Δ⁸+V, on sections of a Hermitian vector bundle over a complete Riemannian manifold, with the potential V satisfying a bound from below by a non-positive function depending on the distance from a point. We give sufficient condition for the essential self-adjointness of such differential operator on Riemannian Manifolds.

1998 ◽  
Vol 151 ◽  
pp. 25-36 ◽  
Author(s):  
Kensho Takegoshi

Abstract.A generalized maximum principle on a complete Riemannian manifold (M, g) is shown under a certain volume growth condition of (M, g) and its geometric applications are given.


2001 ◽  
Vol 162 ◽  
pp. 149-167
Author(s):  
Yong Hah Lee

In this paper, we prove that if a complete Riemannian manifold M has finitely many ends, each of which is a Harnack end, then the set of all energy finite bounded A-harmonic functions on M is one to one corresponding to Rl, where A is a nonlinear elliptic operator of type p on M and l is the number of p-nonparabolic ends of M. We also prove that if a complete Riemannian manifold M is roughly isometric to a complete Riemannian manifold with finitely many ends, each of which satisfies the volume doubling condition, the Poincaré inequality and the finite covering condition near infinity, then the set of all energy finite bounded A-harmonic functions on M is finite dimensional. This result generalizes those of Yau, of Donnelly, of Grigor’yan, of Li and Tam, of Holopainen, and of Kim and the present author, but with a barrier argument at infinity that the peculiarity of nonlinearity demands.


Author(s):  
Zhongmin Qian

In the first part of this paper, Yau's estimates for positive L-harmonic functions and Li and Yau's gradient estimates for the positive solutions of a general parabolic heat equation on a complete Riemannian manifold are obtained by the use of Bakry and Emery's theory. In the second part we establish a heat kernel bound for a second-order differential operator which has a bounded and measurable drift, using Girsanov's formula.


Author(s):  
TAKAHIRO HASEBE

The energy representation of a gauge group on a Riemannian manifold has been discussed by several authors. Y. Shimada has shown the irreducibility with the use of white noise analysis for compact Riemannian manifolds. In this paper we extend its technique to the noncompact Riemannian manifolds which have differential operators satisfying some conditions.


1966 ◽  
Vol 27 (2) ◽  
pp. 419-427
Author(s):  
Masatake Kuranishi

Let E and E′ be C∞ vector bundles over a C∞ manifold M. Denote by Γ(E) (resp. by Γ(E′) the vector space of C∞ cross-sections of E (resp. of E′) over M. Take a linear differential operator of the first order D: Γ(E) → Γ(E′) induced by a vector bundle mapping σ(D): jl(E) ′ E′, where Jk(E) denotes the vector bundle of k-jets of cross-sections of E.


Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4571-4578 ◽  
Author(s):  
P. Ahmadi ◽  
H. Khatibzadeh

In this paper, we study the following gradient system on a complete Riemannian manifold M, {-x?(t) = grad'(x(t)) x(0) = x0, where ? : M ? R is a C1 function with Argmin ? ? ?. We prove that the gradient flow x(t) converges to a critical point of ? if ? is pseudo-convex, or if ? is quasi-convex and M is Hadamard. As an application to minimization, we consider a discrete version of the system to approximate a minimum point of a given pseudo-convex function ?.


Author(s):  
Mariusz Plaszczyk

AbstractIf (M,g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism TM → T* M given by v → g(v,−) between the tangent TM and the cotangent T* M bundles of M. In the present note first we generalize this isomorphism to the one J


2017 ◽  
Vol 14 (09) ◽  
pp. 1750119
Author(s):  
Young Jin Suh ◽  
Carlo Alberto Mantica ◽  
Uday Chand De ◽  
Prajjwal Pal

In this paper, we introduce a new tensor named [Formula: see text]-tensor which generalizes the [Formula: see text]-tensor introduced by Mantica and Suh [Pseudo [Formula: see text] symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004]. Then, we study pseudo-[Formula: see text]-symmetric manifolds [Formula: see text] which generalize some known structures on pseudo-Riemannian manifolds. We provide several interesting results which generalize the results of Mantica and Suh [Pseudo [Formula: see text] symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012) 1250004]. At first, we prove the existence of a [Formula: see text]. Next, we prove that a pseudo-Riemannian manifold is [Formula: see text]-semisymmetric if and only if it is Ricci-semisymmetric. After this, we obtain a sufficient condition for a [Formula: see text] to be pseudo-Ricci symmetric in the sense of Deszcz. Also, we obtain the explicit form of the Ricci tensor in a [Formula: see text] if the [Formula: see text]-tensor is of Codazzi type. Finally, we consider conformally flat pseudo-[Formula: see text]-symmetric manifolds and prove that a [Formula: see text] spacetime is a [Formula: see text]-wave under certain conditions.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1941
Author(s):  
Sharief Deshmukh ◽  
Nasser Bin Turki ◽  
Haila Alodan

In this article, we show that the presence of a torqued vector field on a Riemannian manifold can be used to obtain rigidity results for Riemannian manifolds of constant curvature. More precisely, we show that there is no torqued vector field on n-sphere Sn(c). A nontrivial example of torqued vector field is constructed on an open subset of the Euclidean space En whose torqued function and torqued form are nowhere zero. It is shown that owing to topology of the Euclidean space En, this type of torqued vector fields could not be extended globally to En. Finally, we find a necessary and sufficient condition for a torqued vector field on a compact Riemannian manifold to be a concircular vector field.


2019 ◽  
Vol 19 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Sergey Stepanov ◽  
Irina Tsyganok

Abstract We prove a Liouville-type theorem for two orthogonal complementary totally umbilical distributions on a complete Riemannian manifold with non-positive mixed scalar curvature. This is applied to some special types of complete doubly twisted and warped products of Riemannian manifolds.


Sign in / Sign up

Export Citation Format

Share Document