scholarly journals LOCATION AND STABILITY OF THE TRIANGULAR POINTS IN THE TRIAXIAL ELLIPTIC RESTRICTED THREE-BODY PROBLEM

2021 ◽  
Vol 57 (2) ◽  
pp. 311-319
Author(s):  
M. Radwan ◽  
Nihad S. Abd El Motelp

The main goal of the present paper is to evaluate the perturbed locations and investigate the linear stability of the triangular points. We studied the problem in the elliptic restricted three body problem frame of work. The problem is generalized in the sense that the two primaries are considered as triaxial bodies. It was found that the locations of these points are affected by the triaxiality coefficients of the primaries and the eccentricity of orbits. Also, the stability regions depend on the involved perturbations. We also studied the periodic orbits in the vicinity of the triangular points.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. Narayan ◽  
Amit Shrivastava

The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.


2017 ◽  
pp. 47-52
Author(s):  
K. Zahra ◽  
Z. Awad ◽  
H.R. Dwidar ◽  
M. Radwan

This paper investigates the location and linear stability of triangular points under combined effects of perturbations: triaxialty of a massive primary, oblateness of a less massive one, and relativistic corrections. The primaries in this system are assumed to move in elliptical orbits around their common barycenter. It is found that the locations of the triangular points are affected by the involved perturbations. The stability of orbits near these points is also examined. We observed that these points are stable for the mass ratio, ?, range 0 < ? < ?c, where ?c is the critical mass ratio, and unstable for the range ?c ? ? ? 0.5.


2017 ◽  
Vol 12 ◽  
pp. 1-21
Author(s):  
Jagadish Singh ◽  
Ayas Mungu Simeon

This paper explores the motion of an infinitesimal body around the triangular equilibrium points in the framework of circular restricted three-body problem (CR3BP) with the postulation that the primaries are triaxial rigid bodies, radiating in nature and are also under the influence of Poynting–Robertson (P-R) drag. We study the linear stability of these triangular points and for the numerical application, the binary stars Kruger 60 (AB) and Archird have been considered. These triangular points are not only perceived to move towards the line joining the primaries in the direction of the bigger primary with increasing triaxiality, they are also unstable owing to the destabilizing influence of P-R drag.


2019 ◽  
Vol 28 (1) ◽  
pp. 145-153
Author(s):  
Walid Ali Rahoma ◽  
Akram Masoud ◽  
Fawzy Ahmed Abd El-Salam ◽  
Elamira Hend Khattab

Abstract This paper aims to study the effect of the triaxiality and the oblateness as a special case of primaries on the locations and stability of the collinear equilibrium points of the elliptic restricted three body problem (in brief ERTBP). The locations of the perturbed collinear equilibrium points are first determined in terms of mass ratio of the problem (the smallest mass divided by the total mass of the system) and different concerned perturbing factors. The difference between the locations of collinear points in the classical case of circular restricted three body problem and those in the perturbed case is represented versus mass ratio over its range. The linear stability of the collinear points is discussed. It is observed that the stability regions for our model depend mainly on the eccentricity of the orbits in addition to the considered perturbations.


2021 ◽  
Author(s):  
Jagadish Singh ◽  
Shitu Muktar Ahmad

Abstract This paper studies the position and stability of equilibrium points in the circular restricted three-body problem (CR3BP) under the influence of small perturbations in the Coriolis and centrifugal forces when the primaries are radiating and heterogeneous oblate spheroids. It is seen that there exist five libration points as in the classical restricted three-body problem, three collinear Li(i=1,2,3) and two triangular Li(i= 4,5). It is also seen that the triangular points are no longer to form equilateral triangles with the primaries rather they form simple triangles with line joining the primaries. It is further observed that despite all perturbations the collinear points remain unstable while the triangular points are stable for 0 < µ < µc and unstable for µc ≤ µ ≤ ½, where µc is the critical mass ratio depending upon aforementioned parameters. It is marked that small perturbation in the Coriolis force, radiation and heterogeneous oblateness of the both primaries have destabilizing tendencies. Their numerical examination is also performed.


2016 ◽  
Vol 1 (1) ◽  
pp. 123-144 ◽  
Author(s):  
Elbaz I. Abouelmagd ◽  
Juan L.G. Guirao

AbstractIn this survey paper we offer an analytical study regarding the perturbed planar restricted three-body problem in the case that the three involved bodies are oblate. The existence of libration points and their linear stability are explored under the effects of the perturbations in Coriolis and centrifugal forces. The periodic orbits around these points are also studied under these effects. Moreover, the elements of periodic orbits around these points are determined.


2019 ◽  
Vol 7 (2) ◽  
pp. 25
Author(s):  
Ancy Johnson ◽  
Ram Krishan Sharma

Locations of the Lagrangian points are computed and periodic orbits are studied around the triangular points in the photogravitational elliptic restricted three-body problem (ER3BP) by considering the more massive primary as the source of radiation and smaller primary as an oblate spheroid. A new mean motion taken from Sharma et al. [13] is used to study the effect of radiation pressure and oblateness of the primaries. The critical mass parameter  that bifurcates periodic orbits from non-periodic orbits tends to reduce with radiation pressure and oblateness. The transition curves defining stable region of orbits are drawn for different values of radiation pressure and oblateness using the analytical method of Bennet [14]. Tadpole orbits with long- and short- periodic oscillations are obtained for Sun-Jupiter and Sun-Saturn systems.  


Sign in / Sign up

Export Citation Format

Share Document