scholarly journals Synthesis and Spectral Studies of Ru(II) Carbonyl Schiff Base Complexes

Author(s):  
B. Prabhakaran ◽  
N. Santhi ◽  
M. Emayavaramban

The synthesis and characterization of hexa co-ordinated ruthenium(II) complexes of the type [Ru(CO)(B)(L)] (where B = PPh3, AsPh3, py or pip and L = dibasic tetradentate Schiff base ligand) were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = P, B = PPh3, py or pip, E = As, B = AsPh3)with different tetradentate ligands. The ligands were derived by the condensation of 5-chloro-4-methyl-2-hydroxy benzophenone with ethylenediamine, propylenediamine and o-phenylene-diamine in 1:1 molar ratio. All the compounds have been characterized by elemental analysis and spectral (FT-IR, UV-VIS and 1H-NMR) methods. An octahedral environment around Ru(II) ion has been tentatively proposed for all the complexes

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ibrahim A. M. Saraireh ◽  
Mohammednoor Altarawneh ◽  
Jibril Alhawarin ◽  
Mahmoud Salman ◽  
Abdel Aziz Abu-Yamin ◽  
...  

Schiff base diethyl 4,4-(pentane-2,4-diylidenebis(azanylylidene))benzoate (1) as a new ligand (L) was prepared by the reaction of acetylacetone with benzocaine in the ratio of 1 : 1. Two transition-metal complexes, [Ni(II)(LCl(HOEt))] (2) and [Zn(II)(LCl(HOEt))] (3), have been synthesized from metal salts with didentate Schiff base ligand (L) and characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR UV-Vis spectroscopy, and magnetic susceptibility. The biological activity of the complexes was studied. In addition, the M06-2x density function theory method and the 6-31G(d) basic set were applied to determine the optimized structures of 1–3 and to determine their IR and 1H NMR, 13C NMR spectra theoretically. The data are in good agreement with the experimental results. The geometries of complexes 2 and 3 were determined to be square-planar for 2 and tetrahedral for 3.


2020 ◽  
Vol 20 (6) ◽  
pp. 1311
Author(s):  
Shatha Mohammed Hassan Obaid ◽  
Jasim Shihab Sultan ◽  
Abbas Ali Salih Al-Hamdani

The reaction of methyldopa with o-vanillin in refluxing ethanol afforded Schiff base and characterized through physical analysis with a number of spectra also the study of biological activity. The geometry of the Schiff base was identified through using (C.H.N) analysis, Mass, 1H-NMR, FT-IR, UV-Vis spectroscopy. Metal complexes of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ with Schiff base have been prepared in the molar ratio 2:1 (Metal:L), (L = Schiff base ligand) except Hg2+ at molar ratio 1:1 (Hg:L). The prepared complexes were characterized by using Mass, FT-IR and UV-Vis spectral studies, on other than magnetic properties and flame atomic absorption, conductivity measurements. According to the results a dinuclear octahedral geometry has been suggested for Cr3+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ complexes, dinuclear tetrahedral for Cd2+ and mononuclear tetrahedral for Hg2+ complex. This work highlights the relevance of metal complexation strategy to stabilize the ligands and improve their bioactivity. Schiff base complexes have been screen for their antibacterial activity against Gram negative and positive bacteria and antifungal activity showing promising antibacterial and biological activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hossein Naeimi ◽  
Mohsen Moradian

Synthesis and characterization of some new Schiff base ligands derived from various diamines and nitrosalicylaldehyde and their complexes of Ni(II) and Cu(II) are reported. Several spectral techniques such as UV-Vis, FT-IR, and NMR spectra were used to identify the chemical structures of the reported ligands and their complexes. The ligands are found to be bound to the metal atom through the oxygen atoms of the hydroxyl groups and nitrogen atoms of imine groups, which is also supported by spectroscopic techniques. The results obtained by FT-IR and NMR showed that the Schiff base complexes of transition metal (II) have square-planar geometry.


2001 ◽  
Vol 40 (5) ◽  
pp. 972-976 ◽  
Author(s):  
Steven L. Barnholtz ◽  
John D. Lydon ◽  
Gloria Huang ◽  
Meera Venkatesh ◽  
Charles L. Barnes ◽  
...  

2012 ◽  
Vol 9 (2) ◽  
pp. 962-969 ◽  
Author(s):  
Zahraa Salim M. Al-Garawi ◽  
Ivan Hameed R. Tomi ◽  
Ali Hussein R. Al-Daraji

In this study, two new Schiff base compounds derived from the condensation reaction ofL-glycine andL-tryptophan with 4-methylbenzal-dehyde have been synthesized. The Schiff base compounds were characterized by FT-IR, UV and1H NMR spectroscopy. Their effects on the activity of total (ACP), prostatic (PAP) and non prostatic (NPA) acid phosphatase enzymes were studied. The Schiff base derived fromL-glycine (A) demonstrated inhibition effect on the ACP and NPA activities and activation effect on PAP activity. The Schiff base derived fromL-tryptophan (B) demonstrated semi fixed inhibition effects on the ACP and NPA activities at high concentrations (5.5×10-2, 5.5×10-3and 5.5×10-4M) and activator effect at low concentration (5.5×10-5M) while it was exhibits as activator on PAP activity.


Author(s):  
Ankita A. Bhalu ◽  
Kalpesh Vilapara ◽  
Minaxi Maru ◽  
Manish Shah

N-(3-Bromo-4-hydroxy-5-methoxybenzylidene)-4-Bromobenzenamine was synthesized. This was further used to synthesize Co(II), Ni(II) and Co(II) based metal complexes and characterized by FT-IR, Elemental analysis, ESI Mass and UV spectroscopy.


2021 ◽  
Vol 11 (1) ◽  
pp. 3249-3260

Herein, we describe the synthesis and characterization of a Schiff base ligand (E)-N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (HBMB) and its Mn(II), Ni(II), and Cu(II) metal complexes (C1-C3) respectively. The ligand HBMB was synthesized by reacting condensation of salicylaldehyde and 4-methoxy benzohydrazide in a 1:1 molar ratio. The structure of HBMB and its metal complexes (C1-C3) were evaluated by using UV-Vis, FT-IR, 1H-NMR, mass spectroscopy as well as on the basis of elemental analysis, conductivity measurements, and thermogravimetric techniques (TGA). The synthesized molecules' tumoricidal properties were performed against human breast cancer (MCF-7) and colon cancer (HT 29) cell lines. The biological results indicated that the ligand, HBMB, and metal complexes possess dose-dependent selective cytotoxicity against the tested carcinoma cells. The synthesized compounds were further evaluated for their in vitro antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli), and fungal strains (Aspergillus niger).


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Har Lal Singh ◽  
J. B. Singh

New Schiff base (HL) ligand is prepared via condensation of isatins and amino acids in 1:1 molar ratio. Metal complexes are prepared and characterized by elemental analysis, molar conductance, electronic, infrared, and multinuclear magnetic resonance (1H NMR, 13C NMR, and 119Sn NMR). The analytical data showed that the ligand acts as bidentate toward metal ions via azomethine nitrogen and carboxylate oxygen by a stoichiometric reaction of metal : ligand (1 : 2) to from metal complexes (Pb(II)(L)2 and Bu2Sn(L)2, where L is the Schiff base ligands of histidine and methionine). The conductivity values between 15 and 25 Ω−1cm2 mol−1 in DMF imply the presence of nonelectrolyte species. On the basis of the above spectral studies, distorted octahedral and tetrahedral geometry have been proposed for the resulting organotin(IV) and lead(II) complexes.


2019 ◽  
Vol 31 (8) ◽  
pp. 1871-1876
Author(s):  
Eida S. Al-Farraj ◽  
Amani S. Alturiqi ◽  
Murefah M. Anazy ◽  
Reda A. Ammar

A novel Co(III) complex derived from hexaadentate Schiff base ligand, H3L was described. The ligand is prepared from the reaction of tris-2-aminoethyl amine and o-vanillin in 1:3 molar ratio. The structure of the ligand and its Co(III) complex was described by micro-analyses, FT-IR, NMR, ESI-MS and UV/visible and thermal stability. DFT study was carried out to get insights into the ligand and its Co(III) complex to compare the values of bond lengths and angles with each other. The electronic spectra, Mulliken atomic charge distribution, HOMO-LUMO energy and the thermodynamic parameters have been calculated.


Sign in / Sign up

Export Citation Format

Share Document