rational polyhedra
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Gennadiy Averkov ◽  
Matthias Schymura

AbstractFor a setXof integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with Xis called the relaxation complexity $${{\,\mathrm{rc}\,}}(X)$$rc(X). This parameter, introduced by Kaibel & Weltge (2015), captures the complexity of linear descriptions of Xwithout using auxiliary variables. Using tools from combinatorics, geometry of numbers, and quantifier elimination, we make progress on several open questions regarding$${{\,\mathrm{rc}\,}}(X)$$rc(X)and its variant$${{\,\mathrm{rc}\,}}_\mathbb {Q}(X)$$rcQ(X), restricting the descriptions of Xto rational polyhedra. As our main results we show that$${{\,\mathrm{rc}\,}}(X) = {{\,\mathrm{rc}\,}}_\mathbb {Q}(X)$$rc(X)=rcQ(X)when: (a)Xis at most four-dimensional, (b)Xrepresents every residue class in$$(\mathbb {Z}/2\mathbb {Z})^d$$(Z/2Z)d, (c) the convex hull of Xcontains an interior integer point, or (d) the lattice-width of Xis above a certain threshold. Additionally,$${{\,\mathrm{rc}\,}}(X)$$rc(X)can be algorithmically computed when Xis at most three-dimensional, orXsatisfies one of the conditions (b), (c), or (d) above. Moreover, we obtain an improved lower bound on$${{\,\mathrm{rc}\,}}(X)$$rc(X)in terms of the dimension of X.


2014 ◽  
Vol 23 (2) ◽  
pp. 248-268 ◽  
Author(s):  
DANIELE MUNDICI

A rational polyhedron$P\subseteq {\mathbb{R^n}}$ is a finite union of simplexes in ${\mathbb{R^n}}$ with rational vertices. P is said to be $\mathbb Z$-homeomorphic to the rational polyhedron $Q\subseteq {\mathbb{R^{\it m}}}$ if there is a piecewise linear homeomorphism η of P onto Q such that each linear piece of η and η−1 has integer coefficients. When n=m, $\mathbb Z$-homeomorphism amounts to continuous $\mathcal{G}_n$-equidissectability, where $\mathcal{G}_n=GL(n,\mathbb Z) \ltimes \mathbb Z^{n}$ is the affine group over the integers, i.e., the group of all affinities on $\mathbb{R^{n}}$ that leave the lattice $\mathbb Z^{n}$ invariant. $\mathcal{G}_n$ yields a geometry on the set of rational polyhedra. For each d=0,1,2,. . ., we define a rational measure λd on the set of rational polyhedra, and show that any two $\mathbb Z$-homeomorphic rational polyhedra $$P\subseteq {\mathbb{R^n}}$$ and $Q\subseteq {\mathbb{R^{\it m}}}$ satisfy $\lambda_d(P)=\lambda_d(Q)$. $\lambda_n(P)$ coincides with the n-dimensional Lebesgue measure of P. If 0 ≤ dim P=d < n then λd(P)>0. For rational d-simplexes T lying in the same d-dimensional affine subspace of ${\mathbb{R^{\it n}}, $\lambda_d(T)$$ is proportional to the d-dimensional Hausdorff measure of T. We characterize λd among all unimodular invariant valuations.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250017 ◽  
Author(s):  
LEONARDO CABRER ◽  
DANIELE MUNDICI

An ℓ-groupG is an abelian group equipped with a translation invariant lattice-order. Baker and Beynon proved that G is finitely generated projective if and only if it is finitely presented. A unital ℓ-group is an ℓ-group G with a distinguished order unit, i.e. an element 0 ≤ u ∈ G whose positive integer multiples eventually dominate every element of G. Unital ℓ-homomorphisms between unital ℓ-groups are group homomorphisms that also preserve the order unit and the lattice structure. A unital ℓ-group (G, u) is projective if whenever ψ : (A, a) → (B, b) is a surjective unital ℓ-homomorphism and ϕ : (G, u) → (B, b) is a unital ℓ-homomorphism, there is a unital ℓ-homomorphism θ : (G, u) → (A, a) such that ϕ = ψ ◦ θ. While every finitely generated projective unital ℓ-group is finitely presented, the converse does not hold in general. Classical algebraic topology (à la Whitehead) is combined in this paper with the Włodarczyk–Morelli solution of the weak Oda conjecture for toric varieties, to describe finitely generated projective unital ℓ-groups.


2011 ◽  
Vol 12 (4) ◽  
pp. 435-469 ◽  
Author(s):  
V. Baldoni ◽  
N. Berline ◽  
J. A. De Loera ◽  
M. Köppe ◽  
M. Vergne
Keyword(s):  

2009 ◽  
Vol 62 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Leonardo Manuel Cabrer ◽  
Daniele Mundici

2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
K. Subramani

This paper is concerned with the computational complexities of three types of queries, namely, satisfiability, equivalence, and hull inclusion. The first two queries are analyzed over the domain of CNF formulas, while hull inclusion queries are analyzed over continuous and discrete sets defined by rational polyhedra. Although CNF formulas can be represented by polyhedra over discrete sets, we analyze them separately on account of their distinct structure. In particular, we consider the NAESAT and XSAT versions of satisfiability over HornCNF, 2CNF, and Horn⊕2CNF formulas. These restricted families find applications in a number of practical domains. From the hull inclusion perspective, we are primarily concerned with the question of checking whether two succinct descriptions of a set of points are equivalent. In particular, we analyze the complexities of integer hull inclusion over 2SAT and Horn polyhedra. Hull inclusion problems are important from the perspective of deriving minimal descriptions of point sets. One of the surprising consequences of our work is the stark difference in complexities between equivalence problems in the clausal and polyhedral domains for the same polyhedral structure.


2008 ◽  
Vol 341 (4) ◽  
pp. 945-961 ◽  
Author(s):  
Matthias Beck ◽  
Christian Haase ◽  
Asia R. Matthews

Sign in / Sign up

Export Citation Format

Share Document