attack surface
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 119)

H-INDEX

15
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Maninderpal Singh ◽  
Gagangeet Singh Aujla ◽  
Rasmeet Singh Bali

AbstractInternet of Drones (IoD) facilitates the autonomous operations of drones into every application (warfare, surveillance, photography, etc) across the world. The transmission of data (to and fro) related to these applications occur between the drones and the other infrastructure over wireless channels that must abide to the stringent latency restrictions. However, relaying this data to the core cloud infrastructure may lead to a higher round trip delay. Thus, we utilize the cloud close to the ground, i.e., edge computing to realize an edge-envisioned IoD ecosystem. However, as this data is relayed over an open communication channel, it is often prone to different types of attacks due to it wider attack surface. Thus, we need to find a robust solution that can maintain the confidentiality, integrity, and authenticity of the data while providing desired services. Blockchain technology is capable to handle these challenges owing to the distributed ledger that store the data immutably. However, the conventional block architecture pose several challenges because of limited computational capabilities of drones. As the size of blockchain increases, the data flow also increases and so does the associated challenges. Hence, to overcome these challenges, in this work, we have proposed a derived blockchain architecture that decouples the data part (or block ledger) from the block header and shifts it to off-chain storage. In our approach, the registration of a new drone is performed to enable legitimate access control thus ensuring identity management and traceability. Further, the interactions happen in the form of transactions of the blockchain. We propose a lightweight consensus mechanism based on the stochastic selection followed by a transaction signing process to ensure that each drone is in control of its block. The proposed scheme also handles the expanding storage requirements with the help of data compression using a shrinking block mechanism. Lastly, the problem of additional delay anticipated due to drone mobility is handled using a multi-level caching mechanism. The proposed work has been validated in a simulated Gazebo environment and the results are promising in terms of different metrics. We have also provided numerical validations in context of complexity, communication overheads and computation costs.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 513
Author(s):  
Efstratios Chatzoglou ◽  
Georgios Kambourakis ◽  
Christos Smiliotopoulos

The impact that IoT technologies have on our everyday life is indisputable. Wearables, smart appliances, lighting, security controls, and others make our life simpler and more comfortable. For the sake of easy monitoring and administration, such devices are typically accompanied by smartphone apps, which are becoming increasingly popular, and sometimes are even required to operate the device. Nevertheless, the use of such apps may indirectly magnify the attack surface of the IoT device itself and expose the end-user to security and privacy breaches. Therefore, a key question arises: do these apps curtail their functionality to the minimum needed, and additionally, are they secure against known vulnerabilities and flaws? In seek of concrete answers to the aforesaid question, this work scrutinizes more than forty chart-topping Android official apps belonging to six diverse mainstream categories of IoT devices. We attentively analyse each app statically, and almost half of them dynamically, after pairing them with real-life IoT devices. The results collected span several axes, namely sensitive permissions, misconfigurations, weaknesses, vulnerabilities, and other issues, including trackers, manifest data, shared software, and more. The short answer to the posed question is that the majority of such apps still remain susceptible to a range of security and privacy issues, which in turn, and at least to a significant degree, reflects the general proclivity in this ecosystem.


2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Njabulo Sakhile Mtetwa ◽  
Paul Tarwireyi ◽  
Cecilia Nombuso Sibeko ◽  
Adnan Abu-Mahfouz ◽  
Matthew Adigun

The Internet of Things (IoT) is changing the way consumers, businesses, and governments interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific functional requirements or use cases without paying too much attention to security. Consequently, attackers usually compromise IoT devices with lax security to retrieve sensitive information such as encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the exponential growth in connected smart devices significantly widen the attack surface. Despite efforts to deal with security problems, the security of IoT devices and the privacy of the data they collect and process are still areas of concern in research. Whenever vulnerabilities are discovered, device manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely to affected devices remains a challenge. This study aims to develop a security model that employs Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of concept was implemented and evaluated using low-powered devices. The experimental results show that the proposed model is feasible for constrained and low-powered LoRaWAN devices.


Author(s):  
Heloise Pieterse

The world is witnessing a rise in cyber-related incidents. As information technology improves and the reliance on technology increases, the frequency and severity of cyber incidents escalate. The impact is felt globally, and South Africa is not immune to the effects. The country’s fast-paced technological evolution continues to increase the attack surface within the cyber domain. The increased attack surface is confirmed by recent cyberattacks affecting well-known and established South African organisations. This article reviews findings from an evaluation of South Africa’s cyber threat landscape that analysed 74 cyber incidents identified as occurring between 2010 and 2020. The 74 incidents are categorised according to incident type, affected sector, perpetrator type, and motivation. It is found that the most common incident type is data exposure, the most-affected sector is the public sector, the most prevalent perpetrators are hackers, and the most common motivation is criminal. The article makes recommendations about how South Africa can reduce the risk factors in its cyber threat landscape.


2021 ◽  
Author(s):  
Ra. Kamalaeswari ◽  
V. Ceronmani Sharmila

The main aim of this project is to propose a threat modeling framework that promotes the security of health care services. The threat model is used to analyze the cyber threats that makes the electronic health monitoring devices vulnerable to a cyber-attack. The model also helps in strengthening the security of the software-based web applications like EMR and EHR used in a health care organization. The information assets are identified and the threat agents are eliminated considering the software, web application and monitoring devices as attack surface. The major goal of this threat model is to analyze and establish the trust boundaries in the OpenEMR that render a secure data transmission. We use a STRIDE threat model and a DFD based approach using the OWASP threat modeling tool. The SIEM tools provide a continuous security methodology to document the process and result.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-20
Author(s):  
Changyuan Lin ◽  
Hamzeh Khazaei ◽  
Andrew Walenstein ◽  
Andrew Malton

Embedded sensors and smart devices have turned the environments around us into smart spaces that could automatically evolve, depending on the needs of users, and adapt to the new conditions. While smart spaces are beneficial and desired in many aspects, they could be compromised and expose privacy, security, or render the whole environment a hostile space in which regular tasks cannot be accomplished anymore. In fact, ensuring the security of smart spaces is a very challenging task due to the heterogeneity of devices, vast attack surface, and device resource limitations. The key objective of this study is to minimize the manual work in enforcing the security of smart spaces by leveraging the autonomic computing paradigm in the management of IoT environments. More specifically, we strive to build an autonomic manager that can monitor the smart space continuously, analyze the context, plan and execute countermeasures to maintain the desired level of security, and reduce liability and risks of security breaches. We follow the microservice architecture pattern and propose a generic ontology named Secure Smart Space Ontology (SSSO) for describing dynamic contextual information in security-enhanced smart spaces. Based on SSSO, we build an autonomic security manager with four layers that continuously monitors the managed spaces, analyzes contextual information and events, and automatically plans and implements adaptive security policies. As the evaluation, focusing on a current BlackBerry customer problem, we deployed the proposed autonomic security manager to maintain the security of a smart conference room with 32 devices and 66 services. The high performance of the proposed solution was also evaluated on a large-scale deployment with over 1.8 million triples.


Author(s):  
George W Clark ◽  
Todd R Andel ◽  
J Todd McDonald ◽  
Tom Johnsten ◽  
Tom Thomas

Robotic systems are no longer simply built and designed to perform sequential repetitive tasks primarily in a static manufacturing environment. Systems such as autonomous vehicles make use of intricate machine learning algorithms to adapt their behavior to dynamic conditions in their operating environment. These machine learning algorithms provide an additional attack surface for an adversary to exploit in order to perform a cyberattack. Since an attack on robotic systems such as autonomous vehicles have the potential to cause great damage and harm to humans, it is essential that detection and defenses of these attacks be explored. This paper discusses the plausibility of direct and indirect cyberattacks on a machine learning model through the use of a virtual autonomous vehicle operating in a simulation environment using a machine learning model for control. Using this vehicle, this paper proposes various methods of detection of cyberattacks on its machine learning model and discusses possible defense mechanisms to prevent such attacks.


Author(s):  
Nahla Aljojo

<p>This paper examined the impact of a network attack on a congested transmission session. The research is motivated by the fact that the previous research community has neglected to evaluate security issues related to network congestion environments, and has instead concentrated on resolving congestion issues only. At any point in time, attackers can take advantage of the congestion problem, exploit the attack surface, and inject attack vectors. In order to circumvent this issue, a machine learning algorithm is trained to correlate attack vectors from the attack surface in a network congestion signals environment with the value of decisions over time in order to maximise expected attack vectors from the attack surface. Experimental scenario that dwell on transmission rate overwhelming transmission session, resulting in a standing queue was used. The experiment produced a dataset in which a TCP transmission through bursting transmission were capture. The data was acquired using a variety of experimental scenarios. Nave Bayes, and K-Nearest Neighbours prediction analyses demonstrate strong prediction performance. As a result, this study re-establishes the association between attack surface and vectors with network attack prediction.    </p>


2021 ◽  
Author(s):  
Bihai Lin ◽  
Jiaqi Li ◽  
Yanhua Liu ◽  
Kedong Wu

Sign in / Sign up

Export Citation Format

Share Document