Maximum Power Extraction from Permanent Magnet Synchronous Generator in Wind Power Energy Systems Using Type-2 Fuzzy Logic

Author(s):  
Sadegh Hesari ◽  
Mohsen Noruzi Azghandi
Author(s):  
Meriem Otmane Rachedi ◽  
Mohammed Larbi Saidi ◽  
Fayçel Arbaoui

Variable speed wind turbine systems (VSWT’s) have been in receipt of extensive attention among the various renewable energy systems. The present paper focuses on fuzzy fractional order proportional-integral (FFOPI) control segment for variable speed wind turbine (VSWT) directly driving permanent magnet synchronous generator (PMSG). The main objective of this study is to reach maximum power point tracking (MPPT) through combination of advanced control based on FFOPI control applied to generator side converter (turbine and PMSG). The basic idea of the FFOPI controller is to implement a fuzzy logic controller (FLC) in cascade with Fractional Order Proportional Integral controller (FOPI). A comparative study with FOPI and classical PI control schemes is made. The traditional PI controller cannot deliver a sufficiently great performance for the VSWT. However, the results found that the proposed approach (FFOPI) is more effective and feasible for controlling the permanent magnet synchronous generator to mantain maximum power extraction. The validation of results has been performed through simulation using Matlab/Simulink®.


2019 ◽  
Vol 42 (3) ◽  
pp. 586-597 ◽  
Author(s):  
Li Shengquan ◽  
Li Juan ◽  
Tang Yongwei ◽  
Shi Yanqiu ◽  
Cao Wei

This paper deals with the critical issue in a direct-driven permanent magnet synchronous generator (PMSG)-based wind energy conversion system (WECS): the rejection of internal and external disturbances, including the uncertainties of external environment, rapid wind speed changes in the original parameters of the generator caused by mutative operating conditions. To track the maximum power, a maximum power point tracking strategy based on model predictive controller (MPC) is proposed with extended state observer (ESO) to attenuate the disturbances and uncertainties. In real application, system inertia and the system parameters vary in a wide range with variations of wind speeds and disturbances, which substantially degrade the maximum power tracking performance of wind turbine. The MPC design should incorporate the available model information into the ESO to improve the control efficiency. Based on this principle, a model-based MPC with ESO control structure is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of internal and external disturbances is compensated in a more effective way compared with the ESO-based MPC approach and traditional proportional integral differential (PID) control method.


Sign in / Sign up

Export Citation Format

Share Document