Factors Affecting Adoption of Soil and Water Management Practices in Machakos County, Kenya

2016 ◽  
Vol 3 (4) ◽  
pp. 292-295 ◽  
Author(s):  
M. M. Mutuku ◽  
◽  
S. N. Nguluu ◽  
T. E. Akuja ◽  
P. Bernard
2019 ◽  
Vol 27 (4) ◽  
pp. 447-477 ◽  
Author(s):  
Helen M. Baulch ◽  
Jane A. Elliott ◽  
Marcos R.C. Cordeiro ◽  
Don N. Flaten ◽  
David A. Lobb ◽  
...  

The Northern Great Plains is a key region to global food production. It is also a region of water stress that includes poor water quality associated with high concentrations of nutrients. Agricultural nitrogen and phosphorus loads to surface waters need to be reduced, yet the unique characteristics of this environment create challenges. The biophysical reality of the Northern Great Plains is one where snowmelt is the major period of nutrient transport, and where nutrients are exported predominantly in dissolved form. This limits the efficacy of many beneficial management practices (BMPs) commonly used in other regions and necessitates place-based solutions. We discuss soil and water management BMPs through a regional lens—first understanding key aspects of hydrology and hydrochemistry affecting BMP efficacy, then discussing the merits of different BMPs for nutrient control. We recommend continued efforts to “keep water on the land” via wetlands and reservoirs. Adoption and expansion of reduced tillage and perennial forage may have contributed to current nutrient problems, but both practices have other environmental and agronomic benefits. The expansion of tile and surface drainage in the Northern Great Plains raises urgent questions about effects on nutrient export and options to mitigate drainage effects. Riparian vegetation is unlikely to significantly aid in nutrient retention, but when viewed against an alternative of extending cultivation and fertilization to the waters’ edge, the continued support of buffer strip management and refinement of best practices (e.g., harvesting vegetation) is merited. While the hydrology of the Northern Great Plains creates many challenges for mitigating nutrient losses, it also creates unique opportunities. For example, relocating winter bale-grazing to areas with low hydrologic connectivity should reduce loadings. Managing nutrient applications must be at the center of efforts to mitigate eutrophication. In this region, ensuring nutrients are not applied during hydrologically sensitive periods such as late autumn, on snow, or when soils are frozen will yield benefits. Working to ensure nutrient inputs are balanced with crop demands is crucial in all landscapes. Ultimately, a targeted approach to BMP implementation is required, and this must consider the agronomic and economic context but also the biophysical reality.


2020 ◽  
Vol 15 (4) ◽  
pp. 293-298
Author(s):  
Filiberto Altobelli ◽  
Ronald Vargas ◽  
Giuseppe Corti ◽  
Carmelo Dazzi ◽  
Luca Montanarella ◽  
...  

The UN Sustainable Development Goals (SDGs) identify the need to restore degraded soils in order to improve productivity and the provision of ecosystem services. The aim is to support food production, store and supply clean water, conserve biodiversity, sequester carbon, and improve soil resilience in a context of climate change. Within this framework, in order to achieve the SDGs and to correct land management in the long-term, soil management is considered mandatory. The reduction of land degradation should be based on various sustainable soil management practices that improve and maintain soil organic matter levels, increase water infiltration, and improve soil water management. This technical review - a policy paper - summarizes the sustainable and territorial impact of soil degradation, including soil water erosion, from the global level to the European and National levels. Furthermore, with the aim of sharing ongoing soil and water management actions, instruments, and initiatives, we provide information on soil and water conservation activities and prospects in Italy.


2004 ◽  
Vol 36 (2) ◽  
pp. 435-436 ◽  
Author(s):  
Todd D. Davis

The 2002 Farm Bill creates several opportunities for landowners to adopt management practices that protect and improve soil and water quality. Landowners considering enrollment in conservation programs must compare the monetary and nonmonetary costs and benefits from removing land from production agriculture. The overall purpose of this invited paper session was to improve the understanding of the factors affecting a landowner's decision to enroll in conservation programs. Papers addressed the environmental benefits of conservation programs and compared the returns to enrolling in conservation programs to the returns from production agriculture.


2020 ◽  
Vol 9 (2) ◽  
pp. 1486-1488
Author(s):  
Jitendra Kumar ◽  
H Kalita ◽  
Badapmain Mukdoh ◽  
Doni Jini ◽  
Rajesh A Alone ◽  
...  

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


Sign in / Sign up

Export Citation Format

Share Document