nutrient retention
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 216)

H-INDEX

55
(FIVE YEARS 6)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Oumar Sacko ◽  
Nancy L. Engle ◽  
Timothy J. Tschaplinski ◽  
Sandeep Kumar ◽  
James Weifu Lee

Abstract Background Biochar ozonization was previously shown to dramatically increase its cation exchange capacity, thus improving its nutrient retention capacity. The potential soil application of ozonized biochar warrants the need for a toxicity study that investigates its effects on microorganisms. Results In the study presented here, we found that the filtrates collected from ozonized pine 400 biochar and ozonized rogue biochar did not have any inhibitory effects on the soil environmental bacteria Pseudomonas putida, even at high dissolved organic carbon (DOC) concentrations of 300 ppm. However, the growth of Synechococcus elongatus PCC 7942 was inhibited by the ozonized biochar filtrates at DOC concentrations greater than 75 ppm. Further tests showed the presence of some potential inhibitory compounds (terephthalic acid and p-toluic acid) in the filtrate of non-ozonized pine 400 biochar; these compounds were greatly reduced upon wet-ozonization of the biochar material. Nutrient detection tests also showed that dry-ozonization of rogue biochar enhanced the availability of nitrate and phosphate in its filtrate, a property that may be desirable for soil application. Conclusion Ozonized biochar substances can support soil environmental bacterium Pseudomonas putida growth, since ozonization detoxifies the potential inhibitory aromatic molecules. Graphical Abstract


2022 ◽  
Vol 9 (1) ◽  
pp. 49-55
Author(s):  
Indrayani Rambu Apu ◽  
Uska Peku Jawang ◽  
Marten Umbu Nganji

Lewa sub-district is one of the sub-districts in East Sumba Regency, which has dry land that can be maximized for the development of porang plants and development purposes; information on the potential of porang plantations is needed. This study aimed to determine the biophysical characteristics of the land and the land suitability class of porang plants. The analytical method used was the matching method by comparing the land characteristics and plant growth requirements and the overlay method. The matching results show that the land characteristics in Lewa Subdistrict are class S1 (Very suitable), covering an area of 26.220,209 ha and Class S2 (quite suitable), covering an area of 3.608,523 ha. Limiting factors in this area are water availability (OA) such as drainage, nutrient retention (nr) such as CEC and pH, and erosion hazards (eh) such as slope.


2021 ◽  
Author(s):  
Helen Avery

Organic fertilizers can serve as an element of transitions to sustainable low-input agriculture in semi-arid regions of the MENA region. They play a key role in supporting soil biota and soil fertility. Yield improvements, availability and relatively low costs make organic fertilizers an attractive alternative for farmers. In semi-arid regions, important considerations are improved soil quality, which in turn affects soil water retention, while better root development helps crops resist heat and water stress. Organic fertilizers thus support climate adaptation and regional food security. Soil quality is crucial for carbon sequestration, at the same time that increased nutrient retention reduces impacts of agricultural runoff on groundwater and water bodies. Factors that impede the generalised use of organic fertilizers include lack of expertise, subsidy structures, constraints of the wider food and agricultural systems, and difficulties in transitioning from conventional agriculture. Such obstacles are aggravated in countries affected by security issues, financial volatility or restrictions in access to market. Against the background of both general and local constraints, the chapter examines possible pathways to benefit from organic fertilizers, in particular synergies with other sustainable agricultural practices, as well as improved access to expertise.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 811-825
Author(s):  
Danielle L. Gelardi ◽  
Irfan H. Ainuddin ◽  
Devin A. Rippner ◽  
Janis E. Patiño ◽  
Majdi Abou Najm ◽  
...  

Abstract. Biochar is purported to provide agricultural benefits when added to the soil, through changes in saturated hydraulic conductivity (Ksat) and increased nutrient retention through chemical or physical means. Despite increased interest and investigation, there remains uncertainty regarding the ability of biochar to deliver these agronomic benefits due to differences in biochar feedstock, production method, production temperature, and soil texture. In this project, a suite of experiments was carried out using biochars of diverse feedstocks and production temperatures, in order to determine the biochar parameters which may optimize agricultural benefits. Sorption experiments were performed with seven distinct biochars to determine sorption efficiencies for ammonium and nitrate. Only one biochar effectively retained nitrate, while all biochars bound ammonium. The three biochars with the highest binding capacities (produced from almond shell at 500 and 800 ∘C (AS500 and AS800) and softwood at 500 ∘C (SW500)) were chosen for column experiments. Biochars were amended to a sandy loam and a silt loam at 0 % and 2 % (w/w), and Ksat was measured. Biochars reduced Ksat in both soils by 64 %–80 %, with the exception of AS800, which increased Ksat by 98 % in the silt loam. Breakthrough curves for nitrate and ammonium, as well as leachate nutrient concentration, were also measured in the sandy loam columns. All biochars significantly decreased the quantity of ammonium in the leachate, by 22 % to 78 %, and slowed its movement through the soil profile. Ammonium retention was linked to high cation exchange capacity and a high oxygen-to-carbon ratio, indicating that the primary control of ammonium retention in biochar-amended soils is the chemical affinity between biochar surfaces and ammonium. Biochars had little to no effect on the timing of nitrate release, and only SW500 decreased total quantity, by 27 % to 36 %. The ability of biochar to retain nitrate may be linked to high micropore specific surface area, suggesting a physical entrapment rather than a chemical binding. Together, this work sheds new light on the combined chemical and physical means by which biochar may alter soils to impact nutrient leaching and hydraulic conductivity for agricultural production.


2021 ◽  
Vol 19 (2) ◽  
pp. 189
Author(s):  
Regan Leonardus Kaswanto ◽  
Ruth Mevianna Aurora ◽  
Doni Yusri ◽  
Sofyan Sjaf ◽  
Simon Barus

<p class="A04-abstrak2">As an expansion area, North Labuhanbatu District has a purpose to improve the social welfare. Meanwhile one of the significant sector in the community is agriculture. Agriculture provides the highest income for the society and has a potency to further develop and establish the area. However, the development should relevant with environment characteristic essentially. Based on preliminary survey, there are 5 agricultural commodities growing in this area namely palm oil, rubber, rice field, cocoa, and coconut which spread over the 8 sub-districts. The increasing of population triggers land use changes particularly in agriculture. Therefore analysis of land suitability for agriculture is fundamental hence policy direction can be applied in each sub-district based on agriculture commodities which suitable with their characteristic accordingly. The evaluation of land suitability is conducted by comparing the physical characteristics with the existing of land suitability criteria which prossessed by ArcGIS software. Land suitability in North Labuhanbatu is identified with 4 clases: S1 (very suitable), S2 (moderately suitable), S3 (marginally suitable), and N (not suitable). Furthermore, there are 4 limiting factors in this study: water availability, root media, nutrient retention, and erosion hazards. The result shows that rubber, rice field, and coconut have very suitable (S1) land to be planted.Therefore the recomendation is to develop agroforestry landscape practices for sustainable livelihoods in Labura District.</p>


2021 ◽  
Author(s):  
Marit A. J. Nederlof ◽  
Marc C. J. Verdegem ◽  
Aad C. Smaal ◽  
Henrice M. Jansen
Keyword(s):  

2021 ◽  
Vol 22 (23) ◽  
pp. 13100
Author(s):  
Shafaque Sehar ◽  
Muhammad Faheem Adil ◽  
Muhammad Zeeshan ◽  
Paul Holford ◽  
Fangbin Cao ◽  
...  

Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0252694
Author(s):  
Lena Kretz ◽  
Elisabeth Bondar-Kunze ◽  
Thomas Hein ◽  
Ronny Richter ◽  
Christiane Schulz-Zunkel ◽  
...  

Sediment and nutrient retention are essential ecosystem functions that floodplains provide and that improve river water quality. During floods, the floodplain vegetation retains sediment, which settles on plant surfaces and the soil underneath plants. Both sedimentation processes require that flow velocity is reduced, which may be caused by the topographic features and the vegetation structure of the floodplain. However, the relative importance of these two drivers and their key components have rarely been both quantified. In addition to topographic factors, we expect vegetation height and density, mean leaf size and pubescence, as well as species diversity of the floodplain vegetation to increase the floodplain’s capacity for sedimentation. To test this, we measured sediment and nutrients (carbon, nitrogen and phosphorus) both on the vegetation itself and on sediment traps underneath the vegetation after a flood at 24 sites along the River Mulde (Germany). Additionally, we measured biotic and topographic predictor variables. Sedimentation on the vegetation surface was positively driven by plant biomass and the height variation of the vegetation, and decreased with the hydrological distance (total R2 = 0.56). Sedimentation underneath the vegetation was not driven by any vegetation characteristics but decreased with hydrological distance (total R2 = 0.42). Carbon, nitrogen and phosphorus content in the sediment on the traps increased with the total amount of sediment (total R2 = 0.64, 0.62 and 0.84, respectively), while C, N and P on the vegetation additionally increased with hydrological distance (total R2 = 0.80, 0.79 and 0.92, respectively). This offers the potential to promote sediment and especially nutrient retention via vegetation management, such as adapted mowing. The pronounced signal of the hydrological distance to the river emphasises the importance of a laterally connected floodplain with abandoned meanders and morphological depressions. Our study improves our understanding of the locations where floodplain management has its most significant impact on sediment and nutrient retention to increase water purification processes.


2021 ◽  
pp. e00473
Author(s):  
Mykola Kochiieru ◽  
Krzysztof Lamorski ◽  
Dalia Feizienė ◽  
Virginijus Feiza ◽  
Alvyra Šlepetienė ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document