scholarly journals Study on Temperature Control in Plant Factory Based on Neural Network PID Controller

2014 ◽  
Vol 36 (12) ◽  
pp. 2577-2586 ◽  
Author(s):  
Si-Wei XIA ◽  
Shu-Kai DUAN ◽  
Li-Dan WANG ◽  
Xiao-Fang HU

2014 ◽  
Vol 599-601 ◽  
pp. 827-830 ◽  
Author(s):  
Wei Tian ◽  
Yi Zhun Peng ◽  
Pan Wang ◽  
Xiao Yu Wang

Taking the temperature control of a refrigerated space as example, this paper designs a controller which is based on traditional PID operation and BP neural network algorithm. It has better steady-state precision and adaptive ability. Firstly, the article introduces the concepts of the refrigerated space, PID and BP algorithm. Then, the temperature control of refrigerated space is simulated in MATLAB. The PID parameters will be adjusted by simulation in BP Neural Network. The PID control parameters could be created real-time online, which makes the controller performance best.


2014 ◽  
Vol 1044-1045 ◽  
pp. 881-884
Author(s):  
Xin Wang ◽  
He Pan

In the thesis the adaptive ability of neural network strong and good nonlinear approximation ability, A controller is designed based on BP neural network by the adaptive ability of neural network strong and good nonlinear approximation ability in this paper, this method changed defect of the usual PID controller that parameters of annealing furnace condition are not easy set and the ability to adapt is poor. The new method is not only has good stability, but also has high control precision and strong adaptability.


2013 ◽  
Vol 765-767 ◽  
pp. 1903-1907
Author(s):  
Jie Wei ◽  
Guo Biao Shi ◽  
Yi Lin

This paper proposes using BP neural network PID to improve the yaw stability of the vehicle with active front steering system. A dynamic model of vehicle with active front steering is built firstly, and then the BP neural network PID controller is designed in detail. The controller generates the suitable steering angle so that the vehicle follows the target value of the yaw rate. The simulation at different conditions is carried out based on the fore established model. The simulation results show the BP neural network PID controller can improve the vehicles yaw stability effectively.


Sign in / Sign up

Export Citation Format

Share Document