scholarly journals Diffusion Chaos in Reaction – Diffusion Boundary Problem in the Dumbbell Domain

2015 ◽  
Vol 20 (3) ◽  
pp. 43-57
Author(s):  
S. D. Glyzin ◽  
P. L. Shokin
Author(s):  
Ling Zhou ◽  
Shan Zhang ◽  
Zuhan Liu

In this paper we consider a system of reaction–diffusion–advection equations with a free boundary, which arises in a competition ecological model in heterogeneous environment. The evolution of the free-boundary problem is discussed, which is an extension of the results of Du and Lin (Discrete Contin. Dynam. Syst. B19 (2014), 3105–3132). Precisely, when u is an inferior competitor, we prove that (u, v) → (0, V) as t→∞. When u is a superior competitor, we prove that a spreading–vanishing dichotomy holds, namely, as t→∞, either h(t)→∞ and (u, v) → (U, 0), or limt→∞h(t) < ∞ and (u, v) → (0, V). Moreover, in a weak competition case, we prove that two competing species coexist in the long run, while in a strong competition case, two species spatially segregate as the competition rates become large. Furthermore, when spreading occurs, we obtain some rough estimates of the asymptotic spreading speed.


1994 ◽  
Vol 5 (3) ◽  
pp. 255-265 ◽  
Author(s):  
John Chadam ◽  
Xinfu Chen ◽  
Elena Comparini ◽  
Riccardo Ricci

We consider travelling wave solutions of a reaction–diffusion system arising in a model for infiltration with changing porosity due to reaction. We show that the travelling wave solution exists, and is unique modulo translations. A small parameter ε appears in this problem. The formal limit as ε → 0 is a free boundary problem. We show that the solution for ε > 0 tends, in a suitable norm, to the solution of the formal limit.


Sign in / Sign up

Export Citation Format

Share Document