scholarly journals Environmental Scanning Electron Microscopy of the Infection Process of Fusarium solani f. sp. passiflorae in Seedlings of Passionfruit (Passiflora edulis f. flavicarpa)

Author(s):  
Jacobo Robledo-Buriticá ◽  
Carolina Ángel-García ◽  
Jairo Castaño-Zapata

Se realizó microscopía electrónica de barrido ambiental (ESEM) en plántulas de maracuyá (Passiflora edulis f. flavicarpa) inoculadas con Fusarium solani f. sp. passiflorae (teleomorfo: Haematonectria haematococca) agente causal de la secadera. Las inoculaciones se realizaron cada 24 h hasta el séptimo día y hasta el día quince el intervalo fue de 72 h. El aislamiento en medio de papa (PDA) se colocó sobre el cuello de la raíz mediante la metodología de cribado en tubos de ensayo modificada. La superficie del cuello, tallo, hojas y secciones longitudinales del cuello y tallo fueron observadas. Después de 24 h de la inoculación, se observaron conidios y micelio denso septado sobre la epidermis del tallo y el cuello e hipertrofia y degradación de la pared celular de los tejidos vasculares. Al quinto día se formaron macroconidios a partir de monofiálides en el micelio aéreo en el tallo. Diez días después, las células del xilema y médula del cuello fueron colonizadas por hifas, esporodoquios maduros e inclusiones. La colonización de las estomas por las hifas comenzó seis días después de la inoculación y trece días después de la inoculación se observaron monofiálides con microconidios in situ sobre la superficie foliar. Basados en la evidencia y estudios previos, la colonización interna por hifas de F. solani f. sp. passiflorae se concentra en el área del cuello y los daños de las células indican una actividad enzimática extracelular del hongo. El periodo de incubación y latencia de F. solani f. sp. passiflorae fue de 1,4 y 4 días, respectivamente. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.

2018 ◽  
Vol 6 (29) ◽  
pp. 14464-14464
Author(s):  
Mathew Niania ◽  
Renaud Podor ◽  
T. Ben Britton ◽  
Cheng Li ◽  
Samuel J. Cooper ◽  
...  

Correction for ‘In situ study of strontium segregation in La0.6Sr0.4Co0.2Fe0.8O3−δ in ambient atmospheres using high-temperature environmental scanning electron microscopy’ by Mathew Niania et al., J. Mater. Chem. A, 2018, DOI: 10.1039/c8ta01341a.


2001 ◽  
Vol 711 ◽  
Author(s):  
Ivan Stanish ◽  
Richard I. Ray ◽  
Alok Singh

ABSTRACTSubmicron vesicles immobilized on gold films were visualized in situ using environmental scanning electron microscopy (ESEM). Electron micrographs show that surface immobilized vesicles composed of diacetylenic phospholipids with 1 mole percent disulfide functionality and that encapsulate NaCl are structurally stable for at least three days. Furthermore, energy dispersive spectroscopy (EDS) provides compositional evidence supporting the formation of surface immobilized vesicles. Using ESEM coupled with EDS, a two-layer vesicle structure was imaged and found to contain NaCl and lipid elements sulfur and phosphorous.


2014 ◽  
Vol 11 (4) ◽  
pp. 367 ◽  
Author(s):  
Jani Tuoriniemi ◽  
Stefan Gustafsson ◽  
Eva Olsson ◽  
Martin Hassellöv

Environmental context Characterisation of nanoparticles in terms of number concentration and aggregation state is essential for interpreting data from toxicological tests. These parameters have never been measured in situ in tests carried out in soil matrices. Here, environmental scanning electron microscopy imaging is evaluated for particles in soil, and a method for determining the number concentrations by counting the particles in the images is developed. Abstract The interpretation of nanoparticle toxicity data in soils is currently impeded by the lack of methods capable of characterising particles in situ. To draw relevant and accurate conclusions it would be desirable to characterise particle sizes, agglomeration state and number concentrations. In this article, methodologies for imaging nanoparticles in soils are evaluated for conventional scanning electron microscopy (SEM) and environmental or variable pressure scanning electron microscopy (ESEM). A protocol for dispersing Au particles (~25 to ~450nm) into soil without causing aggregation was developed. The number of particles observed per imaged area of soil correlated linearly with concentration. To determine the number of particles per volume of soil it was also necessary to know how deep in the sample the particles can be visualised. The depth was estimated by both using the Kanaya Okayama model, and spiking the soil with dispersions of known number concentration. These concentrations were determined with a range of methods to ensure their accuracy. Because larger particles can be detected deeper in the matrix, such a calibration should be performed over a range of particle sizes.


Sign in / Sign up

Export Citation Format

Share Document