scholarly journals A Short-Term Output Power Prediction Model of Wind Power Based on Deep Learning of Grouped Time Series

2020 ◽  
Vol 22 (1) ◽  
pp. 29-38
Author(s):  
Yongsheng Wang ◽  
Jing Gao ◽  
Zhiwei Xu ◽  
Leixiao Li
Author(s):  
Yongsheng Wang ◽  
Jing Gao ◽  
Zhiwei Xu ◽  
Jidong Luo ◽  
Leixiao Li

The output power prediction of wind farm is the key to effective utilization of wind energy and reduction of wind curtailment. However, the prediction of output power has long been a difficulty faced by both academia and the wind power industry, due to the high stochasticity of wind energy. This paper attempts to improve the ultra-short-term prediction accuracy of output power in wind farm. For this purpose, an output power prediction model was constructed for wind farm based on the time sliding window (TSW) and long short-term memory (LSTM) network. Firstly, the wind power data from multiple sources were fused, and cleaned through operations like dimension reduction and standardization. Then, the cyclic features of the actual output powers were extracted, and used to construct the input dataset by the TSW algorithm. On this basis, the TSW-LSTM prediction model was established to predict the output power of wind farm in ultra-short-term. Next, two regression evaluation metrics were designed to evaluate the prediction accuracy. Finally, the proposed TSW-LSTM model was compared with four other models through experiments on the dataset from an actual wind farm. Our model achieved a super-high prediction accuracy 92.7% as measured by d_MAE, an evidence of its effectiveness. To sum up, this research simplifies the complex prediction features, unifies the evaluation metrics, and provides an accurate prediction model for output power of wind farm with strong generalization ability.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hang Fan ◽  
Xuemin Zhang ◽  
Shengwei Mei ◽  
Junzi Zhang

The rapid development of wind energy has brought a lot of uncertainty to the power system. The accurate ultra-short-term wind power prediction is the key issue to ensure the stable and economical operation of the power system. It is also the foundation of the intraday and real-time electricity market. However, most researches use one prediction model for all the scenarios which cannot take the time-variant and non-stationary property of wind power time series into consideration. In this paper, a Markov regime switching method is proposed to predict the ultra-short-term wind power of multiple wind farms. In the regime switching model, the time series is divided into several regimes that represent different hidden patterns and one specific prediction model can be designed for each regime. The Toeplitz inverse covariance clustering (TICC) is utilized to divide the wind power time series into several hidden regimes and each regime describes one special spatiotemporal relationship among wind farms. To represent the operation state of the wind farms, a graph autoencoder neural network is designed to transform the high-dimensional measurement variable into a low-dimensional space which is more appropriate for the TICC method. The spatiotemporal pattern evolution of wind power time series can be described in the regime switching process. Markov chain Monte Carlo (MCMC) is used to generate the time series of several possible regime numbers. The Kullback-Leibler (KL) divergence criterion is used to determine the optimal number. Then, the spatiotemporal graph convolutional network is adopted to predict the wind power for each regime. Finally, our Markov regime switching method based on TICC is compared with the classical one-state prediction model and other Markov regime switching models. Tests on wind farms located in Northeast China verified the effectiveness of the proposed method.


2015 ◽  
Vol 733 ◽  
pp. 893-897
Author(s):  
Peng Yu Zhang

The accuracy of short-term wind power forecast is important for the power system operation. Based on the real-time wind power data, a wind power prediction model using wavelet neural network (WNN) is proposed. In order to overcome such disadvantages of WNN as easily falling into local minimum, this paper put forward using Particle Swarm Optimization (PSO) algorithm to optimize the weight and threshold of WNN. It’s advisable to use Support Vector Machine (SVM) to comparatively do prediction and put two outcomes as input vector for Generalized Regression Neural Network (GRNN) to do nonlinear combination forecasting. Simulation shows that combination prediction model can improve the accuracy of the short-term wind power prediction.


Author(s):  
Kuan Lu ◽  
Wen Xue Sun ◽  
Xin Wang ◽  
Xiang Rong Meng ◽  
Yong Zhai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document