scholarly journals A Prediction Model for Ultra-Short-Term Output Power of Wind Farms Based on Deep Learning

Author(s):  
Yongsheng Wang ◽  
Jing Gao ◽  
Zhiwei Xu ◽  
Jidong Luo ◽  
Leixiao Li

The output power prediction of wind farm is the key to effective utilization of wind energy and reduction of wind curtailment. However, the prediction of output power has long been a difficulty faced by both academia and the wind power industry, due to the high stochasticity of wind energy. This paper attempts to improve the ultra-short-term prediction accuracy of output power in wind farm. For this purpose, an output power prediction model was constructed for wind farm based on the time sliding window (TSW) and long short-term memory (LSTM) network. Firstly, the wind power data from multiple sources were fused, and cleaned through operations like dimension reduction and standardization. Then, the cyclic features of the actual output powers were extracted, and used to construct the input dataset by the TSW algorithm. On this basis, the TSW-LSTM prediction model was established to predict the output power of wind farm in ultra-short-term. Next, two regression evaluation metrics were designed to evaluate the prediction accuracy. Finally, the proposed TSW-LSTM model was compared with four other models through experiments on the dataset from an actual wind farm. Our model achieved a super-high prediction accuracy 92.7% as measured by d_MAE, an evidence of its effectiveness. To sum up, this research simplifies the complex prediction features, unifies the evaluation metrics, and provides an accurate prediction model for output power of wind farm with strong generalization ability.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5400
Author(s):  
Pei Zhang ◽  
Chunping Li ◽  
Chunhua Peng ◽  
Jiangang Tian

To improve the accuracy of ultra-short-term wind power prediction, this paper proposed a model using modified long short-term memory (LSTM) to predict ultra-short-term wind power. Because the forget gate of standard LSTM cannot reflect the correction effect of prediction errors on model prediction in ultra-short-term, this paper develops the error following forget gate (EFFG)-based LSTM model for ultra-short-term wind power prediction. The proposed EFFG-based LSTM model updates the output of the forget gate using the difference between the predicted value and the actual value, thereby reducing the impact of the prediction error at the previous moment on the prediction accuracy of wind power at this time, and improving the rolling prediction accuracy of wind power. A case study is performed using historical wind power data and numerical prediction meteorological data of an actual wind farm. Study results indicate that the root mean square error of the wind power prediction model based on EFFG-based LSTM is less than 3%, while the accuracy rate and qualified rate are more than 90%. The EFFG-based LSTM model provides better performance than the support vector machine (SVM) and standard LSTM model.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Mao Yang ◽  
Lei Liu ◽  
Yang Cui ◽  
Xin Su

With the continuous expansion of wind power grid scale, wind power prediction is an important means to reduce the adverse impact of large-scale grid integration on power grid: the higher prediction accuracy, the better safety, and economy of grid operation. The existing research shows that the quality of input sample data directly affects the accuracy of wind power prediction. By the analysis of measured power data in wind farms, this paper proposes an ultra-short-term multistep prediction model of wind power based on representative unit method, which can fully excavate data information and select reasonable data samples. It uses the similarity measure of time series in data mining, spectral clustering, and correlation coefficient to select the representative units. The least squares support vector machine (LSSVM) model is used as a prediction model for outputs of the representative units. The power of the whole wind farm is obtained by statistical upscaling method. And the number of representative units has a certain impact on prediction accuracy. The case study shows that this method can effectively improve the prediction accuracy, and it can be used as pretreatment method of data. It has a wide range of adaptability.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3227 ◽  
Author(s):  
Xiaoyu Shi ◽  
Xuewen Lei ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Kun Ren ◽  
...  

A more accurate hourly prediction of day-ahead wind power can effectively reduce the uncertainty of wind power integration and improve the competitiveness of wind power in power auction markets. However, due to the inherent stochastic and intermittent nature of wind energy, it is very difficult to sharply improve the multi-step wind power forecasting (WPF) accuracy. According to theory of direct and recursive multi-step prediction, this study firstly proposes the models of R (recursive)-VMD (variational model decomposition)-LSTM (long short-term memory) and D (direct)-VMD-LSTM for the hourly forecast of day-ahead wind power by using a combination of a novel and in-depth neural network forecasting model called LSTM and the variational model decomposition (VMD) technique. The data from these model tests were obtained from two real-world wind power series from a wind farm located in Henan, China. The experimental results show that LSTM can achieve more precise predictions than traditional neural networks, and that VMD has a good self-adaptive ability to remove the stochastic volatility and retain more adequate data information than empirical mode decomposition (EMD). Secondly, the R-VMD-LSTM and D-VMD-LSTM are comparatively studied to analyze the accuracy of each step. The results verify the effectiveness of the combination of the two models: The R-VMD-LSTM model provides a more accurate prediction at the beginning of a day, while the D-VMD-LSTM model provides a more accurate prediction at the end of a day.


2021 ◽  
pp. 0309524X2110568
Author(s):  
Lian Lian ◽  
Kan He

The accuracy of wind power prediction directly affects the operation cost of power grid and is the result of power grid supply and demand balance. Therefore, how to improve the prediction accuracy of wind power is very important. In order to improve the prediction accuracy of wind power, a prediction model based on wavelet denoising and improved slime mold algorithm optimized support vector machine is proposed. The wavelet denoising algorithm is used to denoise the wind power data, and then the support vector machine is used as the prediction model. Because the prediction results of support vector machine are greatly affected by model parameters, an improved slime mold optimization algorithm with random inertia weight mechanism is used to determine the best penalty factor and kernel function parameters in support vector machine model. The effectiveness of the proposed prediction model is verified by using two groups actually collected wind power data. Seven prediction models are selected as the comparison model. Through the comparison between the predicted value and the actual value, the prediction error and its histogram distribution, the performance indicators, the Pearson’s correlation coefficient, the DM test, box-plot distribution, the results show that the proposed prediction model has high prediction accuracy.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 80
Author(s):  
Yalong Li ◽  
Fan Yang ◽  
Wenting Zha ◽  
Licheng Yan

With the continuous optimization of energy structures, wind power generation has become the dominant new energy source. The strong random fluctuation of natural wind will bring challenges to power system dispatching, so it is necessary to predict wind power. In order to improve the short-term prediction accuracy of regional wind power, this paper proposes a new combination prediction model based on convolutional neural network (CNN) and similar days analysis. Firstly, the least square fitting and batch normalization (BN) are used to preprocess the data, and then the recent historical wind power data set for CNN is established. Secondly, the Pearson correlation coefficient and cosine similarity combination method are utilized to find similar days in the long-term data set, and the prediction model based on similar days is constructed by the weighting method. Finally, based on the particle swarm optimization (PSO) method, a combined forecasting model is established. The results show that the combined model can accurately predict the future short-term wind power curve, and the prediction accuracy is improved to different extents compared to a single method.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3901 ◽  
Author(s):  
Namrye Son ◽  
Seunghak Yang ◽  
Jeongseung Na

Renewable energy has recently gained considerable attention. In particular, the interest in wind energy is rapidly growing globally. However, the characteristics of instability and volatility in wind energy systems also affect power systems significantly. To address these issues, many studies have been carried out to predict wind speed and power. Methods of predicting wind energy are divided into four categories: physical methods, statistical methods, artificial intelligence methods, and hybrid methods. In this study, we proposed a hybrid model using modified LSTM (Long short-term Memory) to predict short-term wind power. The data adopted by modified LSTM use the current observation data (wind power, wind direction, and wind speed) rather than previous data, which are prediction factors of wind power. The performance of modified LSTM was compared among four multivariate models, which are derived from combining the current observation data. Among multivariable models, the proposed hybrid method showed good performance in the initial stage with Model 1 (wind power) and excellent performance in the middle to late stages with Model 3 (wind power, wind speed) in the estimation of short-term wind power. The experiment results showed that the proposed model is more robust and accurate in forecasting short-term wind power than the other models.


Sign in / Sign up

Export Citation Format

Share Document