scholarly journals Design of Hydraulic Control System for Press Machine and Analysis on Its Fluid Transmission Features

2021 ◽  
Vol 39 (1) ◽  
pp. 161-169
Author(s):  
Fang Zhang

The stability and reliability of hydraulic control system have a direct bearing on the overall dynamic performance of the press machine. Hydromechanical analysis on the hydraulic control system is of theoretical and practical significance to improving the transmission performance and structural design of the entire press machine. From a quantitative perspective, this paper firstly analyzes the fluid transmission features of the hydraulic control system for the press machine, and presents the fluid transmission route and design drawings of the hydraulic control system. The next step is the design of the hydraulic control system. The authors specified the steps of design and calculation for the hydraulic control cylinder, and the principles for determining the power of the diesel engine. After that, experiments were carried out to verify the dynamic and static features of the designed system, and prove that our system is scientific and rational.

2014 ◽  
Vol 628 ◽  
pp. 186-189
Author(s):  
Meng Xiong Zeng ◽  
Jin Feng Zhao ◽  
Wen Ouyang

The control system performance requirement was divided into three parts. They were the stability, rapidity and accuracy. The time-frequency domain analysis in the requirements of three performance were measured through quantitative performance index. The mutual restriction of time-frequency performance and system characteristic parameters of normal second order was discussed. The correlation of system time-frequency performance index was established. The relationship between time-frequency performance indexes in standard two order system was extended to higher order system. The mutually constraining and time-frequency correlation between each performance index was obtained by analysis and calculation. The work had been done above had practical significance to reflect the system dynamic performance in different analytical domains.


2010 ◽  
Vol 426-427 ◽  
pp. 97-101 ◽  
Author(s):  
Fa Ye Zang

Based on the analysis of the belt misalignment of the metal V belt CVT, the reason of the belt misalignment has been discussed. In order to control the misalignment, an electro-hydraulic control system has been designed. After deeply analyzing the structure and principle of the electro-hydraulic control system, the mathematical model of the electro-hydraulic control system has been established. Being varieties of the working situation of car and the non-linearity of the electro-hydraulic control system, A Fuzzy PID algorithm has been designed. Then the simulation of the belt misalignment has been conducted, and the simulation results show that the electro-hydraulic control system and the fuzzy controller could not only control ratio, which had a higher accuracy of the stable state and a stronger robust of the driving condition, but also eliminated the belt misalignment, improved the dynamic performance of the metal V belt CVT.


2012 ◽  
Vol 233 ◽  
pp. 76-79
Author(s):  
Yong Gang Yang ◽  
Jun Sun ◽  
Meng Tao Yang

This paper introduces the hydraulic control system design for the change-wheel garage of Chongqing light rails through analysis of three-stage cylinder synchronization circuit for lifting bodies, and optimizing the design of the slewing mechanism with respect to the hydraulic servo control system of digital cylinder. The results improved the smoothness in the process of changing wheel lifting and the rotary accuracy of the rotary mechanism. Design on the PLC control system of the system is also included as part of this paper.


Sign in / Sign up

Export Citation Format

Share Document