scholarly journals Coastal Reef and Seagrass Monitoring for Coastal Ecosystem Management

2021 ◽  
Vol 16 (3) ◽  
pp. 557-568
Author(s):  
Wahyu Lazuardi ◽  
Ridwan Ardiyanto ◽  
Muh Aris Marfai ◽  
Bachtiar Wahyu Mutaqin ◽  
Denny Wijaya Kusuma

The growth of human occupations in coastal areas and climate change impact have changed the dynamics of seagrass cover and accelerated the damage to coral reefs globally. For these reasons, coastal management measures need to be developed and renewed to preserve the state of seagrass beds and coral reefs. An example includes the improvement of spatial and multitemporal analyses. This study sought to analyze changes in seagrass cover and damages to coral reefs in Gili Sumber Kima, Buleleng Regency, Bali based on multitemporal Sentinel 2A-MSI imagery. The algorithms of a machine learning, Random Forest (RF), and a Support Vector Machine (SVM) were used to classify the benthic habitats (seagrass beds and coral reefs). Also, a change detection analysis was performed to identify the pattern and the extent to which seagrass beds had changed. The multispectral classification of, particularly, coral reefs was used to explain the condition of this benthic habitat. The results showed +-70% to +-83% accuracies of estimated seagrass cover, and the change detection analysis revealed three directions of change, namely an increase of 27.9 ha, a decrease by 86 ha, and a preserved state in 157 ha of seagrass cover. The product of coral reefs mapping had an accuracy of 42%, and the coral reefs in Gili Sumber Kima were split almost equally between the good (1505 ha) and damaged ones (1397 ha). With the spatial information on seagrass beds and coral reefs in every region, the ecological functions of the coast can be assessed more straightforwardly and appropriately incorporated as the basis for monitoring the dynamics of resources and coastal area management.

Author(s):  
W. Pervez ◽  
S. A. Khan ◽  
E. Hussain ◽  
F. Amir ◽  
M. A. Maud

This paper investigated the potential utility of Landsat-8 Operational Land Imager (OLI) for change detection analysis and mapping application because of its superior technical design to previous Landsat series. The OLI SVM classified data was successfully classified with regard to all six test classes (i.e., bare land, built-up land, mixed trees, bushes, dam water and channel water). OLI support vector machine (SVM) classified data for the four seasons (i.e., spring, autumn, winter, and summer) was used to change detection results of six cases: (1) winter to spring which resulted reduction in dam water mapping and increases of bushes; (2) winter to summer which resulted reduction in dam water mapping and increase of vegetation; (3) winter to autumn which resulted increase in dam water mapping; (4) spring to summer which resulted reduction of vegetation and shallow water; (5) spring to autumn which resulted decrease of vegetation; and (6) summer to autumn which resulted increase of bushes and vegetation . OLI SVM classified data resulted higher overall accuracy and kappa coefficient and thus found suitable for change detection analysis.


Author(s):  
W. Pervez ◽  
S. A. Khan ◽  
E. Hussain ◽  
F. Amir ◽  
M. A. Maud

This paper explored the capability of Landsat-8 Operational Land Imager (OLI) for post classification change detection analysis and mapping application because of its enhanced features from previous Landsat series. The OLI support vector machine (SVM) classified data was successfully classified with regard to all six test classes (i.e., open land, residential land, forest, scrub land, reservoir water and waterway). The OLI SVM-classified data for the four seasons (i.e. winter, spring, summer and autumn seasons) were used for change detection analysis of six situations; situation1: winter to spring seasonal change detection resulted reduction in reservoir water mapping and increases of scrub land; situation 2: winter to summer seasonal change detection resulted increase in dam water mapping and increase of scrub land. winter to summer which resulted reduction in dam water mapping and increase of vegetation; situation 3: winter to summer seasonal change detection resulted increase in increase in open land mapping; situation 4: spring to summer seasonal change detection resulted reduction of vegetation and shallow water and increase of open land and reservoir water; situation; 5: spring to autumn seasonal change detection resulted increase of reservoir water and open land; and Situation 6: summer to autumn seasonal change detection resulted increase of open land. OLI SVM classified data found suitable for post classification change detection analysis due to its resulted higher overall accuracy and kappa coefficient.


2021 ◽  
Vol 13 (14) ◽  
pp. 7539
Author(s):  
Zaw Naing Tun ◽  
Paul Dargusch ◽  
DJ McMoran ◽  
Clive McAlpine ◽  
Genia Hill

Myanmar is one of the most forested countries of mainland Southeast Asia and is a globally important biodiversity hotspot. However, forest cover has declined from 58% in 1990 to 44% in 2015. The aim of this paper was to understand the patterns and drivers of deforestation and forest degradation in Myanmar since 2005, and to identify possible policy interventions for improving Myanmar’s forest management. Remote sensing derived land cover maps of 2005, 2010 and 2015 were accessed from the Forest Department, Myanmar. Post-classification change detection analysis and cross tabulation were completed using spatial analyst and map algebra tools in ArcGIS (10.6) software. The results showed the overall annual rate of forest cover loss was 2.58% between 2005 and 2010, but declined to 0.97% between 2010 and 2015. The change detection analysis showed that deforestation in Myanmar occurred mainly through the degradation of forest canopy associated with logging rather than forest clearing. We propose that strengthening the protected area system in Myanmar, and community participation in forest conservation and management. There needs to be a reduction in centralisation of forestry management by sharing responsibilities with local governments and the movement away from corruption in the timber trading industry through the formation of local-based small and medium enterprises. We also recommend the development of a forest monitoring program using advanced remote sensing and GIS technologies.


AMBIO ◽  
2004 ◽  
Vol 33 (3) ◽  
pp. 118-125 ◽  
Author(s):  
Andrés Viña ◽  
Fernando R. Echavarria ◽  
Donald C. Rundquist

2010 ◽  
Vol 10 (10) ◽  
pp. 2179-2190 ◽  
Author(s):  
F. Tsai ◽  
J.-H. Hwang ◽  
L.-C. Chen ◽  
T.-H. Lin

Abstract. On 8 August 2009, the extreme rainfall of Typhoon Morakot triggered enormous landslides in mountainous regions of southern Taiwan, causing catastrophic infrastructure and property damages and human casualties. A comprehensive evaluation of the landslides is essential for the post-disaster reconstruction and should be helpful for future hazard mitigation. This paper presents a systematic approach to utilize multi-temporal satellite images and other geo-spatial data for the post-disaster assessment of landslides on a regional scale. Rigorous orthorectification and radiometric correction procedures were applied to the satellite images. Landslides were identified with NDVI filtering, change detection analysis and interactive post-analysis editing to produce an accurate landslide map. Spatial analysis was performed to obtain statistical characteristics of the identified landslides and their relationship with topographical factors. A total of 9333 landslides (22 590 ha) was detected from change detection analysis of satellite images. Most of the detected landslides are smaller than 10 ha. Less than 5% of them are larger than 10 ha but together they constitute more than 45% of the total landslide area. Spatial analysis of the detected landslides indicates that most of them have average elevations between 500 m to 2000 m and with average slope gradients between 20° and 40°. In addition, a particularly devastating landslide whose debris flow destroyed a riverside village was examined in depth for detailed investigation. The volume of this slide is estimated to be more than 2.6 million m3 with an average depth of 40 m.


Sign in / Sign up

Export Citation Format

Share Document