scholarly journals Thermal Performance Prediction for Air Flow in a Wavy Corrugated Duct at Steady-State Constant Heat Flux Mode and Early Stages of Turbulent Flow Conditions

2019 ◽  
Vol 6 (4) ◽  
pp. 589-598 ◽  
Author(s):  
Ali H. Tarrad ◽  
Damiaa S. Khudor
Author(s):  
Vadim A. Sharifulin ◽  
Tatyana P. Lyubimova

The supercritical modes of water convection are investigated at room temperature in an elongated horizontal cavityes, with a width-to-height ratios of 2 : 1 and 3 : 1. The Prandtl number is assumed to be equal to seven. A constant heat flux is set at the upper free and lower solid boundaries, and the lateral solid boundaries are assumed to be thermally insulated. Calculations carried out by the finite-difference method for values of the Rayleigh number exceeding the critical one by up to thirty times have shown that in the indicated interval of Rayleigh numbers in both cavities in the supercritical region, a single-vortex steady state is realized


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


Sign in / Sign up

Export Citation Format

Share Document