scholarly journals Infectious transcripts from cloned cDNA of potato leafroll luteovirus.

1998 ◽  
Vol 45 (2) ◽  
pp. 611-619 ◽  
Author(s):  
E Sadowy ◽  
K Pluta ◽  
B Gronenborn ◽  
D Hulanicka

Infectious transcripts play a key role in the research on plant viruses at the molecular level. A number of cDNA clones covering the whole genome of the Polish isolate of potato leafroll virus were constructed. Four overlapping clones were selected and assembled using restriction sites. The full copy was positioned between T7 RNA polymerase promoter and unique ScaI site. The full-length capped transcripts of the sequence of the viral genome synthesised in vitro were able to replicate in protoplasts and to produce the viral coat protein.

2013 ◽  
Vol 201 (7) ◽  
pp. 981-995 ◽  
Author(s):  
Jens Tilsner ◽  
Olga Linnik ◽  
Marion Louveaux ◽  
Ian M. Roberts ◽  
Sean N. Chapman ◽  
...  

Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum–derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5′ end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.


2000 ◽  
Vol 74 (4) ◽  
pp. 1658-1662 ◽  
Author(s):  
Uli Schmidt ◽  
Rainer Rudolph ◽  
Gerald Böhm

ABSTRACT VP1 is the major viral coat protein of murine polyomavirus and can be used for the generation of virus-like particles in vitro. Here, we demonstrate that capsid assembly is an equilibrium reaction followed by oxidation of intracapsomere disulfide bonds, which are not essential for the formation of virus-like particles but enable complete particle assembly and prevent capsid dissembly.


1992 ◽  
Vol 10 (3) ◽  
pp. 153-156
Author(s):  
C. Wei ◽  
M.J. Green ◽  
S.E. Godkin ◽  
P.L. Monette

Abstract In vitro cultures of Daphne cneorum L. were successfully used as test samples for the detection of the viral coat protein of daphne virus X (DVX) by Western analysis. This powerful serological technique could thus be used where viral antigen concentrations may be very low, such as in the early screening of in vitro-cultured “heat therapy” tips from virus elimination programs. Western analysis was conducted on randomly selected D. cneorum plants from a commercial nursery and on in vitro cultures from a commercial micropropagation lab. All the plants and cultures tested were DVX-infected, supporting the view that this ornamental shrub may be universally infected with DVX.


1970 ◽  
Vol 56 (4) ◽  
Author(s):  
Adrianna Łoniewska-Lwowska ◽  
Sylwia Chełstowska ◽  
Włodzimierz Zagórski-Ostoja ◽  
Andrzej Pałucha

Translation of viral proteins from subgenomic RNAs (sgRNAs) is a common strategy among positive-stranded RNA viruses. Unlike host mRNA, sgRNA of Potato leafroll virus (PLRV) does not possess a cap at its 5' end nor a poly(A) tail at the 3' terminus, both of which are known to be crucial for translation of RNA in eukaryotic cells. Here, we demonstrate, that in wheat germ extract (WGE) truncation of the sgRNA1 5' UTR increases translation efficiency, as it has previously been observed in rabbit reticulocyte lysate (RRL), whereas removal of the 3' UTR does not affect translation. We also describe two regulatory elements located within the coding sequence of the coat protein (CP) gene and its read-through domain (RTD) and are responsible for regulation of in vitro translation of the PLRV sgRNA1. The frst element is composed of the purine sequence AAAGGAAA located between the AUG codons of the CP and 17K genes. Deletion of this domain or its substitution by pyrimidines reduced by half the translation of both genes, whereas deletion of the RTD resulted in a 3.6-fold reduction in translation efficiency. This is the first report of translation regulatory elements of plant viruses located within a coding region.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Gobert ◽  
Yifat Quan ◽  
Mathilde Arrivé ◽  
Florent Waltz ◽  
Nathalie Da Silva ◽  
...  

AbstractPlant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Junior Corneille Fingu-Mabola ◽  
Thomas Bawin ◽  
Frédéric Francis

Aphids are major crop pests that transmit more than half of all insect-vectored plant viruses responsible for high yield losses worldwide. Entomopathogenic fungi (EPF) are biological control agents mainly used by foliar application to control herbivores, including sap-sucking pests such as aphids. Their ability to colonize plant tissues and to interact with diverse plant pathogenic microorganisms have been reported. In our study, we evaluated the effectiveness of Beauveria bassiana ((Balsamo-Crivelli) Vuillemin) directly applied by contact or/and indirectly via endophytism in tobacco plants (Nicotiana tabacum L.) against the virus vector Myzus persicae (Sulzer) carrying the Potato leafroll virus (PLRV) or not. We found that both contact treatment and endophytic colonization of leaves significantly increased aphid mortality and decreased the fecundity rate when compared to control plants. In addition, on fungal-colonized leaves, viruliferous aphids were more negatively impacted than virus-free ones and nymph mortality was significantly higher than on fungal-free plants. Furthermore, we assessed PLRV transmission by M. persicae on tobacco plants inoculated with either B. bassiana or Metarhizium acridum ((Driver and Milner) JF Bischoff, Rehner, and Humber) as source or/and recipient plants. Myzus persicae was found to acquire and transmit PLRV regardless of the treatment. Nevertheless, the infection rate of endophytically colonized plants was lower at a seven-day incubation period and had increased to almost 100% after fifteen days. These results suggest that B. bassiana is effective against aphids, both by contact and via endophytism, and both B. bassiana and M. acridum delayed PLRV infection in tobacco.


Sign in / Sign up

Export Citation Format

Share Document