Evolution characteristics and factors affecting tourist flow potential in the Yangtze River Delta Urban Agglomerations

资源科学 ◽  
2016 ◽  
Vol 38 (2) ◽  
pp. 120-126
Author(s):  
HUANG Tai
2020 ◽  
Vol 12 (19) ◽  
pp. 7872
Author(s):  
Yijia Huang ◽  
Jiaqi Zhang ◽  
Jinqun Wu

Rapid urbanization has led to a growing number of environmental challenges in large parts of China, where the Yangtze River Delta (YRD) urban agglomerations serve as a typical example. To evaluate the relationship between environmental sustainability gaps and urbanization in 26 cities of the YRD, this study revisited the environmental sustainability assessment (ESA) by combining the metrics of environmental footprints and planetary boundaries at the city level, and then integrated the footprint-boundary ESA framework into decoupling analysis. The results demonstrated considerable spatiotemporal heterogeneity in the environmental sustainability of water use, land use, carbon emissions, nitrogen emissions, phosphorus emissions and PM2.5 emissions across the YRD cities during the study period 2007–2017. Decoupling analysis revealed a positive sign that more than half of the 26 cities had achieved the decoupling of each category of environmental sustainability gaps from urbanization since 2014, especially for nitrogen and phosphorus emissions. On the basis of ESA and decoupling analysis, all the cities were categorized into six patterns, for which the optimal pathways towards sustainable development were discussed in depth. Our study will assist policy makers in formulating more tangible and differentiated policies to achieve decoupling between environmental sustainability gaps and urbanization.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Jinfeng Ma ◽  
Weifeng Li ◽  
Zhao Wang ◽  
Liang He ◽  
Lijian Han

Although urban agglomerations are vital sites for national economic development, comprehensive multidimensional investigations of their performance are lacking. Accordingly, we examined land use efficiency from multiple perspectives in two of the earliest developed and most advanced urban agglomerations in China, the Beijing–Tianjin–Hebei (BTH) region and the Yangtze River Delta (YRD), using different metrics, including trans-regional drivers of the spatial allocation of construction land. We found that: (1) The land use efficiency of urban agglomerations was context dependent. Whereas it was higher in the Beijing–Tianjin–Hebei region for population density per unit area of construction land than in the Yangtze River Delta region, the opposite was true for gross domestic production. Thus, a single aspect did not fully reflect the land use efficiency of urban agglomerations. (2) The land use efficiency of the two urban agglomerations was also scale dependent, and in the Yangtze River Delta region, the use of multiple metrics induced variations between aggregate and local measures. Median values for the land use efficiency of cities within an urban agglomeration were the most representative for comparative purposes. (3) The drivers of the spatial allocation of construction land were trans-regional. At the regional scale, most topographical factors were restrictive. Major regional transport networks significantly influenced the occurrence of construction land near them. Dominant cities and urban areas within each city exerted remote effects on non-dominant cities and rural areas. In principle, the median value can be considered a promising metric for assessing an urban agglomeration’s performance. We suggest that stringent management of land use in areas located along regional rail tracks/roadways may promote sustainable land use.


2021 ◽  
Author(s):  
Ziwu Pan ◽  
Jun Zhu ◽  
Zhenzhen Liu ◽  
Fen Qin

Abstract In recent years, the process of urbanization in China has accelerated, and changes in the underlying surface have caused the difference in average temperature between built-up areas and suburbs to increase, resulting in an urban heat island effect, which has become an important environmental issue for today's urban sustainable development. The Yangtze River Delta urban agglomeration region is the fastest-growing region in China, with economically developed and populous cities such as Shanghai, Nanjing and Suzhou. It has become one of the six major urban agglomerations in the world, and its heat island effect is particularly prominent. The single urban heat island phenomenon gradually evolves into the urban agglomeration heat island phenomenon with urbanization. However, the dynamic transfer process of key blue-green space landscapes that can alleviate land surface temperature (LST) and regional thermal environment (RTE) is still poorly understood, especially in the context of urban agglomerations. With the approval of the State Council on the development plan of the Huaihe River Ecological Economic Belt, the construction of which has been officially upgraded to a national strategy. The Eastern HaiJiang River and Lake Linkage Zone (EJRLLZ) emphasizes strengthening the docking and interaction with the surrounding areas such as the Yangtze River Delta and the Wanjiang City Belt. With the diffusion of the heat island effect of the Yangtze River Delta urban agglomeration, as one of the areas with great potential development around the world-class urban agglomeration, the rich water body and green space in the ERLLZ area are also destroyed and affected. Therefore, we take this region as a case to further quantify the impact of urbanization and urban agglomeration development on the dynamics and evolution of blue-green space.


2021 ◽  
Vol 13 (12) ◽  
pp. 6840
Author(s):  
Yixiong He ◽  
Weiming Song ◽  
Fan Yang

In this research, we choose the coastal cities in the Yangtze River Delta as the subjects of study, including Shanghai, Lianyungang, Yancheng, Nantong, Jiaxing, Ningbo, Zhoushan, Taizhou, and Wenzhou, nine cities in total. With marine ecological products as the starting point and the supply efficiency of marine ecological products in each city as the subjects of research, and after collecting a quantity of data and by constructing the efficiency analyzing modes, we analyze the supply efficiency of those cities with the involved supplying service, cultural service, and value of regulating service as the output, and the operation of related authorities as the input of marine ecological products. Meanwhile, combining with the outside factors affecting the supply efficiency, we explore and identify the existing problems of marine ecology products in this region, such as the unreasonable supply structure, regional development imbalance, marine environment quality degrading, etc., and present the corresponding solutions and rationalization proposal for the existing problems, thus providing a new thought for promoting the development of the Yangtze River Delta, especially for marine activities.


Author(s):  
Wenbo Cai ◽  
Wei Jiang ◽  
Hongyu Du ◽  
Ruishan Chen ◽  
Yongli Cai

With the global increase in population and urban expansion, the simultaneous rise of social demand and degradation of ecosystems is omnipresent, especially in the urban agglomerations of China. In order to manage environmental problems and match ecosystem supply and social demand, these urban agglomerations promoted regional socio-ecological integration but ignored differential city management during the process of integration. Therefore, it is necessary to design a general framework linking ecosystem supply and social demand to differential city management. In addition, in previous studies, ecosystem services supply–demand amount (mis)match assessment was emphasized, but ecosystem services supply–demand type (mis)match assessment was ignored, which may lead to biased decisions. To deal with these problems, this study presented a general ecosystem services framework with six core steps for differential city management and developed a double-indices (amount and type) method to identify ecosystem services supply–demand (mis)matches in an urban agglomeration. This framework and the double-indices method were applied in the case study of the Yangtze River Delta Urban Agglomeration. Ecosystem supply–demand amount and type (mis)match levels and spatial pattern of twenty-six cities were identified. Twenty-six cities in the YRDUA were classified into five kinds of cities with different levels of ES supply–demand (mis)matches for RS, three kinds of cities for PS, and four kinds of cities for CS. Differential city management strategies were designed. Despite its limitations, this study can be a reference to giving insights into ES supply–demand (mis)match assessment and management.


2021 ◽  
Author(s):  
Taotao Lu ◽  
Runzhe Li ◽  
Aira Sacha Nadine Ferrer ◽  
Shuang Xiong ◽  
Pengfei Zou ◽  
...  

Abstract The water resource is highly demanded in the Yangtze River Delta with a developed economy. Long-term exploitation has posed threats of artificial pollution and seawater intrusion to the shallow groundwater. This study aimed to reveal the hydrochemical characteristics and health risks of shallow groundwater in the coastal plain of the Yangtze River Delta. Also, possible factors affecting groundwater quality were discussed. Methods, such as typical hydrochemical tests, water quality assessment and health risk models, were applied to achieve the study targets. The results showed that the shallow groundwater was slightly alkaline, and the average values of total dissolved solids (TDS) and total hardness (TH) were 930.74 mg/L and 436.20 mg/L, respectively. The main hydrochemical types of groundwater were Ca+Mg–HCO3 and Ca/Na–HCO3, accounting for 44.3% and 47.5%, respectively. In addition, As concentration was generally high, with a mean value of 0.0115 mg/L. The principal factors affecting the groundwater components include water-rock interactions (especially silicate), cation exchange, seawater intrusion and human activities. As in the groundwater is strongly influenced by the redox of Fe, Mn, and NO3-. The results of the groundwater quality evaluation indicated that the shallow groundwater in some regions was unsuitable for drinking and agricultural irrigation. Health risk assessment showed that 44.3% of the water samples had significant health risks, which was attributed to the high As concentration. Therefore, it is urgent to establish long-term As monitoring to maintain sustainable groundwater management and drinking water safety. The results of this study can provide essential data for water resource management and human health protection in the Yangtze River Delta.


Sign in / Sign up

Export Citation Format

Share Document