scholarly journals Characteristics of Carbon Fiber Composite Current Collector Used in Proton Exchange Membrane Fuel Cell

2021 ◽  
Vol 33 (11) ◽  
pp. 3931
Author(s):  
Chong-Kai Wang ◽  
Yean-Der Kuan
Author(s):  
P. W. Li ◽  
S. P. Chen ◽  
M. K. Chyu

In order to improve the power output of a fuel cell, a novel approach for gas delivery and mass transfer enhancement in a gas distributor is proposed. A model analyzing the power output against the dimensions of a novel gas delivery channel and current collector is also presented. Experimental study for some proton-exchange-membrane fuel cells and numerical analysis for a planar type solid oxide fuel cell are carried out. Significant improvement of power output was obtained for the newly designed fuel cells compared to conventional ones. Both the experimental results and modeling analysis are of great significance to the design of fuel cells.


Author(s):  
Shashank Sharma ◽  
Mayank Gupta ◽  
Shaswat Anand ◽  
Naveen Kumar

The high costs associated with fuel cell manufacturing have precluded its production on a large scale. The major emphasis of the present wok is to bring down the overall cost of an independent fuel cell unit. The manufacturing cost can be reduced using commonly available and corrosion resistant materials into the fuel cell assembly. Bipolar plates usually employed in proton exchange membrane fuel cells are fabricated from conducting graphite. Graphite owing to its conductivity, corrosion resistance and easy machinability, is the preferred material in static systems. However, due to its brittle characteristics and failure under bending loads, graphite is inferior in its mechanical properties as compared to metals and their alloys. Dimensional stability is also compromised due to wear and friction. In the present work, an attempt is made to assemble a fuel cell stack which would have durability and sustainability in dynamic conditions, where the setup would be able to withstand periodic shocks, vibrations, and fatigue loads. Instead of employing graphite as the bipolar plate which serves the dual purpose of a current collector and area for flow fields, graphite foil protected aluminum as the current collector and machined plastic slabs on which the flow fields are carved, have been employed. Both the substitutes are easily available owing to mass production and have a small processing cost associated with them. Further, the technique employed for processing of Nafion and hot pressing of the catalyst loaded gas diffusion layer onto the proton exchange membrane have been elaborated in the present paper along with the systematic approach followed by the research group eliminating various current collector candidates for fuel cell applications. The various stages attained towards the final fabrication of the foil protected lightweight current collector, has also been highlighted in the present work.


2019 ◽  
Vol 44 (20) ◽  
pp. 10071-10081 ◽  
Author(s):  
Yean-Der Kuan ◽  
Jyun-Long Lyu ◽  
Ting-Ru Ke ◽  
Min-Feng Sung ◽  
Jing-Shan Do

2006 ◽  
Vol 4 (4) ◽  
pp. 441-449 ◽  
Author(s):  
Kazuo Onda ◽  
Takuya Taniuchi ◽  
Takuto Araki ◽  
Daisuke Sunakawa

In order to grasp properly proton exchange membrane fuel cell (PEMFC) power generation performances, it is necessary to know factors for water management such as diffusivity and electro-osmotic coefficient of water vapor through the membrane and factors for power loss such as active and resistive overpotentials. In this study, we have measured these factors to analyze our experimental results of PEMFC power generation tests by using our pseudo-two-dimensional simulation code. It considers simultaneously the mass, charge and energy conservation equations, and the equivalent electric circuit for PEMFC to give numerical distributions of hydrogen/oxygen concentrations, current density, and gas/cell-component temperatures. Various experimental conditions such as fuel and oxygen utilization rates, inlet dew-point temperature, averaged current density, and flow configuration (co- or counterflow) were changed, and all of the numerical distributions of current density agreed well with the measured distributions by segmented current collector. The current distributions were also obtained from hydrogen/oxygen concentration changes along the gas flow measured by gas chromatography. The current distributions measured by the two different methods coincided with each other, showing reliability of our measurement methods.


Author(s):  
Chiun-Hsun Chen ◽  
Tang-Yuan Chen ◽  
Chih-Wei Cheng ◽  
Rong-Guie Peng

This study fabricates a micro proton exchange membrane fuel cell (PEMFC) using micro electro mechanical systems (MEMS) technology. The active area of the membrane is 2 cm × 2 cm (4 cm2). The study is divided into two categories: [(1) the parametric experimental investigation, and (2) the durability test. This work is an attempt to find out how several parameters, including reheat temperature, the material of the current collector plates, the open ratio, and different cathode gases affect micro PEFMC performance. According to the experimental results obtained, both the conducting area and the material of the current collector plates exert great influences on the performance of the micro PEMFC, especially in the conducting area. The cell’s performance is finite when the gas reheat temperature is increased. The results show that the cell performance is better for an open ratio of 75% as compared to ratios of 50% and 67%. The concentration polarization is improved by increasing the air flow rate at high current densities, and if the GDL diffusive capability in the latter cell could be promoted, the differences between these two cells’ performances would be reduced. Furthermore, the performance at an operating voltage of 0.6 V was the most stable one among the four cases tested, and the performance deviation at a fixed operating voltage of 0.4 V was less than ±2.2%.


Sign in / Sign up

Export Citation Format

Share Document