current distributions
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 46)

H-INDEX

42
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sean M. Oliver ◽  
Dmitro J. Martynowych ◽  
Matthew J. Turne ◽  
David A. Hopper ◽  
Ronald L. Walswort ◽  
...  

Abstract The increasing trend for industry adoption of three-dimensional (3D) microelectronics packaging necessitates the development of new and innovative approaches to failure analysis. To that end, our team is developing a tool called the quantum diamond microscope (QDM) that leverages an ensemble of nitrogenvacancy (NV) centers in diamond for simultaneous wide fieldof- view, high spatial resolution, vector magnetic field imaging of microelectronics under ambient conditions [1,2]. Here, we present QDM measurements of two-dimensional (2D) current distributions in an 8 nm process node flip chip integrated circuit (IC) and 3D current distributions in a custom, multi-layer printed circuit board (PCB). Magnetic field emanations from the C4 bumps in the flip chip dominate the QDM measurements, but these prove to be useful for image registration and can be subtracted to resolve adjacent current traces on the micron scale in the die. Vias, an important component in 3D ICs, display only Bx and By magnetic fields due to their vertical orientation, which are challenging to detect with magnetometers that traditionally only measure the Bz component of the magnetic field (orthogonal to the IC surface). Using the multi-layer PCB, we demonstrate that the QDM's ability to simultaneously measure Bx, By, and Bz magnetic field components in 3D structures is advantageous for resolving magnetic fields from vias as current passes between layers. The height difference between two conducting layers is determined by the magnetic field images and agrees with the PCB design specifications. In our initial steps to provide further z depth information for current sources in complex 3D circuits using the QDM, we demonstrate that, due to the linear properties of Maxwell's equations, magnetic field images of individual layers can be subtracted from the magnetic field image of the total structure. This allows for isolation of signal from individual layers in the device that can be used to map embedded current paths via solution of the 2D magnetic inverse. Such an approach suggests an iterative analysis protocol that utilizes neural networks trained with images containing various classes of current sources, standoff distances, and noise integrated with prior information of ICs to subtract current sources layer by layer and provide z depth information. This initial study demonstrates the usefulness of the QDM for failure analysis and points to technical advances of this technique to come.


2021 ◽  
Vol 103 (13) ◽  
Author(s):  
V. G. Kogan ◽  
N. Nakagawa

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11162
Author(s):  
Saoirse Foley ◽  
Henrik Krehenwinkel ◽  
Dong-Qiang Cheng ◽  
William H. Piel

The study of biogeography seeks taxa that share a key set of characteristics, such as timescale of diversification, dispersal ability, and ecological lability. Tarantulas are ideal organisms for studying evolution over continental-scale biogeography given their time period of diversification, their mostly long-lived sedentary lives, low dispersal rate, and their nevertheless wide circumtropical distribution. In tandem with a time-calibrated transcriptome-based phylogeny generated by PhyloBayes, we estimate the ancestral ranges of ancient tarantulas using two methods, DEC+j and BBM, in the context of their evolution. We recover two ecologically distinct tarantula lineages that evolved on the Indian Plate before it collided with Asia, emphasizing the evolutionary significance of the region, and show that both lineages diversified across Asia at different times. The most ancestral tarantulas emerge on the Americas and Africa 120 Ma–105.5 Ma. We provide support for a dual colonization of Asia by two different tarantula lineages that occur at least 20 million years apart, as well as a Gondwanan origin for the group. We determine that their current distributions are attributable to a combination of Gondwanan vicariance, continental rafting, and geographic radiation. We also discuss emergent patterns in tarantula habitat preferences through time.


2021 ◽  
pp. 002029402098420
Author(s):  
Guolong Chen ◽  
Zheng Cao

Koch curve exciting coil of an eddy current probe can adjust the eddy current distributing in more directions at a small domain to enhance the sensitivity of eddy current probe for short defect detection. In this study, a relative entropy and a cross entropy of tangential intersection angle spectrum are proposed to evaluate the eddy current distributions in the different directions when the eddy current probe is positioned at different lift-off distances and excited by different exciting frequency alternative currents. The eddy current distributions induced by a circular and a fractal Koch curve exciting coils are analyzed by the two entropy indices. With the increasing of the lift-off distance or the decreasing of the exciting frequency, the eddy current distributions induced by the Koch curve exciting coil are close to those induced by the circular exciting coil.


Sign in / Sign up

Export Citation Format

Share Document