scholarly journals Upper Cretaceous Calcareous Sponges of the Southeast of East European Platform

Author(s):  
Evgeny M. Pervushov ◽  
◽  
Denis V. Khudyakov ◽  
Author(s):  
V. S. Vishnevskaya ◽  
L. F. Kopaevich ◽  
V. N. Benyamovsky ◽  
M. N. Ovechkina

This article proposes a composite biostratigraphical scheme for the Upper Cretaceous of the East European Platform on the basis of the distribution in the sections of three groups of microfossils–foraminifers, both planktonic and benthic, radiolarians and nannoplankton. Most of the stages and subsustages boundaries are confirmed by macropalaeontological data. The most divided units are on benthic foraminifers and nannoplankton. The diversity of these microfossils and their constant presence in the sections made it possible to identify zones and subzones, while it is possible to subdivide only the beds by planktonic foraminifers and radiolarians. The most favorable stages in the development of plankton biota can be considered the Turonian-Coniacian interval, when the basins of the East European Platform felt the intensive influence of the warm waters of the Tethys ocean. The global Campanian coooling is clearly recorded, reflecting on the taxonomic diversity of all microfossil groups.


Palaeobotany ◽  
2012 ◽  
Vol 3 ◽  
pp. 5-11
Author(s):  
A. V. Gomankov ◽  
V. F. Tarasevich

Dispersed bisaccate pollen grains of Scutasporites nanuki were studied by means of LM, SEM and TEM. Sacci ultrastructure of these pollen grains was rather peculiar. Sacci were like a thin fi lmy fringe attached to the central body near the equator. They were fi lled with sporopollenin elements of irregular shape and various dimensions with equally various cavities between them. Such an ultrastructure is called as spongy. The morphology and ultrastructure of S. nanuki is discussed in the context of the evolution of early conifers.


2005 ◽  
Vol 7 (5) ◽  
pp. 1-12
Author(s):  
M. A. Nagornyi ◽  
V. G. Nikolaev

2020 ◽  
Vol 157 (12) ◽  
pp. 2081-2088
Author(s):  
Sergey B Felitsyn ◽  
Eugeny S. Bogomolov

AbstractAn enhanced concentration of phosphorus has been found at the stratigraphic level of the disappearance of Ediacaran taxa in two areas, the Cis-Dniester region and the Moscow syneclise, on the East European Platform (EEP). The isotope composition of neodymium was determined in Fe sulphide and phosphorite in the same beds. Measured εNd(t) values in diagenetic phosphate nodules are similar to those in iron sulphide from the same layer. During the Ediacaran − Early Cambrian, accumulation of radiogenic Nd in the epeiric basins on the EEP increased progressively from −17.9 and −19.4 in pyrite from the sequence bottom to −7.9 and −8.5 in the Early Cambrian pyrite of the central part of the EEP. The Ediacaran phosphate nodules show εNd(t) ranging from −12.9 to −15.0, while that in the Early Cambrian nodules is typically c. −9.0. These data indicate the secular change in Nd isotope composition of the water reservoir on the EEP from Ediacaran to Cambrian.


2021 ◽  
Author(s):  
Alvina Chistyakova ◽  
Roman Veselovskiy

<p>There's no doubt that nowadays detrital zircon U-Pb geochronology is actually required method of sedimentary basins analysis. Furthermore, this approach may have a lot of applications, such as a stratigraphic correlation. Here we present the first results of U–Pb LA–ICP–MS dating of detrital zircon from the Permian-Triassic red beds located within the Moscow Basin of the East European platform. Two outcrops have been studied: the Zhukov Ravine P/T boundary reference section and the Nedubrovo strata with uncertain stratigraphic position (uppermost Permian or lower Triassic?).</p><p>U–Pb ages of detrital zircon grains have been obtained for two samples – the Upper Permian and Lower Triassic age, which were taken in the proximity to the Permian–Triassic boundary in the Zhukov Ravine. Corresponding age distributions show contrasting provenance of the studied sedimentary rocks, pointing out that principal change in source of clastic material occurred on the Paleozoic-Mesozoic boundary. It means that detrital zircon U–Pb geochronology can be used as an additional independent tool for stratigraphic correlation of the Permian-Triassic red beds, at least within the Moscow Basin. We demonstrate this in the case of the Nedubrovo section with debated (Permian or Triassic?) stratigraphic position: the obtained data on detrital zircons persuasively suggests Early Triassic age of the Nedubrovo strata.</p><p>This study is supported by the Russian Foundation for Basic Research (project no. 18-05-00593).</p>


Sign in / Sign up

Export Citation Format

Share Document