scholarly journals Similarity solutions of fractional order heat equations with variable coefficients

2016 ◽  
Vol 17 (1) ◽  
pp. 245 ◽  
Author(s):  
A. Elsaid ◽  
M. S. Abdel Latif ◽  
M. Maneea
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Xiaoqun Cao

A general iteration formula of variational iteration method (VIM) for fractional heat- and wave-like equations with variable coefficients is derived. Compared with previous work, the Lagrange multiplier of the method is identified in a more accurate way by employing Laplace’s transform of fractional order. The fractional derivative is considered in Jumarie’s sense. The results are more accurate than those obtained by classical VIM and the same as ADM. It is shown that the proposed iteration formula is efficient and simple.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


2020 ◽  
Vol 23 (3) ◽  
pp. 753-763
Author(s):  
Ivan Matychyn ◽  
Viktoriia Onyshchenko

AbstractThe paper deals with the initial value problem for linear systems of FDEs with variable coefficients involving Riemann–Liouville derivatives. The technique of the generalized Peano–Baker series is used to obtain the state-transition matrix. Explicit solutions are derived both in the homogeneous and inhomogeneous case. The theoretical results are supported by an example.


Author(s):  
Akbar Dehghan Nezhad ◽  
Mina Moghaddam Zeabadi

This research presents a numerical approach to obtain the approximate solution of the n-dimensional cohomological equations of fractional order in continuous-time dynamical systems. For this purpose, the $ n $-dimensional fractional M\”{u}ntz-Legendre polynomials (or n-DFMLPs) are introduced. The operational matrix of the fractional Riemann-Liouville derivative is constructed by employing n-DFMLPs. Our method transforms the cohomological equation of fractional order into a system of algebraic equations. Therefore, the solution of that system of algebraic equations is the solution of the associated cohomological equation. The error bound and convergence analysis of the applied method under the $ L^{2} $-norm is discussed. Some examples are considered and discussed to confirm the efficiency and accuracy of our method.


Sign in / Sign up

Export Citation Format

Share Document