scholarly journals A numerical approach based on $ n $-dimensional fractional M\”{u}ntz-Legendre polynomials for solving fractional-order cohomological equations with variable coefficients

Author(s):  
Akbar Dehghan Nezhad ◽  
Mina Moghaddam Zeabadi

This research presents a numerical approach to obtain the approximate solution of the n-dimensional cohomological equations of fractional order in continuous-time dynamical systems. For this purpose, the $ n $-dimensional fractional M\”{u}ntz-Legendre polynomials (or n-DFMLPs) are introduced. The operational matrix of the fractional Riemann-Liouville derivative is constructed by employing n-DFMLPs. Our method transforms the cohomological equation of fractional order into a system of algebraic equations. Therefore, the solution of that system of algebraic equations is the solution of the associated cohomological equation. The error bound and convergence analysis of the applied method under the $ L^{2} $-norm is discussed. Some examples are considered and discussed to confirm the efficiency and accuracy of our method.

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Eid Doha ◽  
Ali Bhrawy ◽  
Samer Ezz-Eldien

AbstractIn this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Author(s):  
Ali Ketabdari ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

Abstract We define a new operational matrix of fractional derivative in the Caputo type and apply a spectral method to solve a two-dimensional fractional optimal control problem (2D-FOCP). To acquire this aim, first we expand the state and control variables based on the fractional order of Bernstein functions. Then we reduce the constraints of 2D-FOCP to a system of algebraic equations through the operational matrix. Now, one can solve straightforward the problem and drive the approximate solution of state and control variables. The convergence of the method in approximating the 2D-FOCP is proved. We demonstrate the efficiency and superiority of the method by comparing the results obtained by the presented method with the results of previous methods in some examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mingxu Yi ◽  
Kangwen Sun ◽  
Jun Huang ◽  
Lifeng Wang

A numerical method based on the CAS wavelets is presented for the fractional integrodifferential equations of Bratu type. The CAS wavelets operational matrix of fractional order integration is derived. A truncated CAS wavelets series together with this operational matrix is utilized to reduce the fractional integrodifferential equations to a system of algebraic equations. The solution of this system gives the approximation solution for the truncated limited2k(2M+1). The convergence and error estimation of CAS wavelets are also given. Two examples are included to demonstrate the validity and applicability of the approach.


2018 ◽  
Vol 36 (4) ◽  
pp. 33-54 ◽  
Author(s):  
Kourosh Parand ◽  
Mehdi Delkhosh

In this paper, a new approximate method for solving of systems of nonlinear Volterra integro-differential equations of arbitrary (integer and fractional) order is introduced. For this purpose, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) based on the classical Chebyshev polynomials of the first kind has been introduced that can be used to obtain the solution of the integro-differential equations (IDEs). Also, we construct the fractional derivative operational matrix of order $\alpha$ in the Caputo's definition for GFCFs. This method reduced a system of IDEs by collocation method into a system of algebraic equations. Some examples to illustrate the simplicity and the effectiveness of the propose method have been presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hammad Khalil ◽  
Ishak Hashim ◽  
Waqar Ahmad Khan ◽  
Abuzar Ghaffari

In this paper, we have extended the operational matrix method for approximating the solution of the fractional-order two-dimensional elliptic partial differential equations (FPDEs) under nonlocal boundary conditions. We use a general Legendre polynomials basis and construct some new operational matrices of fractional order operations. These matrices are used to convert a sample nonlocal heat conduction phenomenon of fractional order to a structure of easily solvable algebraic equations. The solution of the algebraic structure is then used to approximate a solution of the heat conduction phenomena. The proposed method is applied to some test problems. The obtained results are compared with the available data in the literature and are found in good agreement.Dedicated to my father Mr. Sher Mumtaz, (1955-2021), who gave me the basic knowledege of mathematics.


Author(s):  
Hossein Jafari ◽  
Haleh Tajadodi ◽  
Dumitru Baleanu

AbstractIn this article, we develop an effective numerical method to achieve the numerical solutions of nonlinear fractional Riccati differential equations. We found the operational matrix within the linear B-spline functions. By this technique, the given problem converts to a system of algebraic equations. This technique is used to solve fractional Riccati differential equation. The obtained results are illustrated both applicability and validity of the suggested approach.


Author(s):  
E. H. Doha ◽  
A. H. Bhrawy ◽  
S. S. Ezz-Eldien

In this work, we discuss an operational matrix approach for introducing an approximate solution of the fractional subdiffusion equation (FSDE) with both Dirichlet boundary conditions (DBCs) and Neumann boundary conditions (NBCs). We propose a spectral method in both temporal and spatial discretizations for this equation. Our approach is based on the space-time shifted Legendre tau-spectral method combined with the operational matrix of fractional integrals, described in the Riemann–Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. In addition, this approach is also investigated for solving the FSDE with the variable coefficients and the fractional reaction subdiffusion equation (FRSDE). For conforming the validity and accuracy of the numerical scheme proposed, four numerical examples with their approximate solutions are presented. Also, comparisons between our numerical results and those obtained by compact finite difference method (CFDM), Box-type scheme (B-TS), and FDM with Fourier analysis (FA) are introduced.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Dumitru Baleanu ◽  
Mohsen Alipour ◽  
Hossein Jafari

We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs) operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the proposed method are illustrated by several examples.


Sign in / Sign up

Export Citation Format

Share Document