Analytical Solutions of Incompressible Couple Stress Fluid Flows

2019 ◽  
Vol 13 (6) ◽  
pp. 1009-1014
2019 ◽  
Vol 24 (2) ◽  
pp. 439-451
Author(s):  
A. Walicka ◽  
E. Walicki ◽  
P. Jurczak

Abstract In this paper, a multilobe conical bearing is analyzed. A lubricant modelled by a couple stress fluid flows in the bearing clearance. The Galerkin method is used to determine the mechanical parameters of multilobe journal bearings. An example of a two-lobe conical bearing is discussed in detail. The inertia of the flowing lubricant is taken into account in the analysis. It has been found that the increase of the couple stress generates an increase the pressure in the clearance.


Author(s):  
Satish C. Sharma ◽  
Nathi Ram

The lubricants are generally additized in order to enhance their lubricating properties. As a consequence of this, they exhibit nonlinear relationship between the shear stress and shear strain. One class of lubricants which has received considerable attention in recent years is the couple stress lubricants. The study of couple stress fluid flows has been the subject of increased interest owing to its widespread industrial and scientific applications such as synthetic fluids, polymer-thickened oils, liquid crystals and animal bloods. The present work is therefore aimed to study analytically the influence of couple stress lubricant on the performance of an orifice compensated non-recessed hole-entry hydrostatic/hybrid journal bearings. The modified Reynolds equation based on Stoke’s couple stress fluid theory has been solved by using the Finite Element Method. The numerically simulated results have been presented for various valves of couple stress parameters and external loads. The numerically simulated results reveal that the influence of couple stress lubricant increases the value of minimum fluid film thickness at constant value of external load for hybrid journal bearing vis-a-vis Newtonian lubricant. Further, it has been observed that the value of direct fluid film damping coefficient (C22) is larger for hydrostatic journal bearing lubricated with couple stress lubricant.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
M. Devakar ◽  
D. Sreenivasu ◽  
B. Shankar

We establish, in this paper, the closed form analytical solutions of steady fully developed flows of couple stress fluid between two concentric cylinders, generated due to the constant pressure gradient or the translatory motion of the outer cylinder or both, using the slip boundary conditions. The classical solutions for Newtonian fluid in the hydrodynamic case appear as a limiting case of our solutions. The velocity profiles of the flows are presented and the effect of various parameters on velocity is discussed. The results indicate that the presence of couple stresses decreases the velocity of the fluid.


2016 ◽  
Vol 19 (5) ◽  
pp. 391-404 ◽  
Author(s):  
B. M. Shankar ◽  
I. S. Shivakumara ◽  
Chiu-On Ng

Sign in / Sign up

Export Citation Format

Share Document