Next steps in the evolution of AAV vector characterization technologies

2021 ◽  
Vol 7 (9) ◽  
pp. 1133-1138
Author(s):  
Eduard Ayuso
Keyword(s):  
Author(s):  
Marcus Davidsson ◽  
Gang Wang ◽  
Patrick Aldrin-Kirk ◽  
Tiago Cardoso ◽  
Sara Nolbrant ◽  
...  

Author(s):  
Anca Remes ◽  
Dima Ibrahim Basha ◽  
Thomas Puehler ◽  
Christopher Borowski ◽  
Susanne Hille ◽  
...  

2019 ◽  
Vol 5 ◽  
pp. 49
Author(s):  
J. Martinez-Navio ◽  
R. Desrosiers ◽  
S. Fuchs ◽  
D. Mendes ◽  
E. Rakasz ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 130-138 ◽  
Author(s):  
Valder R. Arruda ◽  
James N. Hagstrom ◽  
Jeffrey Deitch ◽  
Terry Heiman-Patterson ◽  
Rodney M. Camire ◽  
...  

Abstract Recent data demonstrate that the introduction into skeletal muscle of an adeno-associated viral (AAV) vector expressing blood coagulation factor IX (F.IX) can result in long-term expression of the transgene product and amelioration of the bleeding diathesis in animals with hemophilia B. These data suggest that biologically active F.IX can be synthesized in skeletal muscle. Factor IX undergoes extensive posttranslational modifications in the liver, the normal site of synthesis. In addition to affecting specific activity, these posttranslational modifications can also affect recovery, half-life in the circulation, and the immunogenicity of the protein. Before initiating a human trial of an AAV-mediated, muscle-directed approach for treating hemophilia B, a detailed biochemical analysis of F.IX synthesized in skeletal muscle was carried out. As a model system, human myotubes transduced with an AAV vector expressing F.IX was used. F.IX was purified from conditioned medium using a novel strategy designed to purify material representative of all species of rF.IX in the medium. Purified F.IX was analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), N-terminal sequence analysis, chemical γ-carboxyglutamyl analysis, carbohydrate analysis, assays for tyrosine sulfation, and serine phosphorylation, and for specific activity. Results show that myotube-synthesized F.IX has specific activity similar to that of liver-synthesized F.IX. Posttranslational modifications critical for specific activity, including removal of the signal sequence and propeptide, and γ-carboxylation of the N-terminal glutamic acid residues, are also similar, but carbohydrate analysis and assessment of tyrosine sulfation and serine phosphorylation disclose differences. In vivo experiments in mice showed that these differences affect recovery but not half-life of muscle-synthesized F.IX.


2016 ◽  
Vol 24 ◽  
pp. S4-S5
Author(s):  
Claire A. Schreiber ◽  
Yoshihiro Izumiya ◽  
Aravind Asokan ◽  
Yasuhiro Ikeda

2015 ◽  
Vol 24 (21) ◽  
pp. 6229-6239 ◽  
Author(s):  
Miranda L. Scalabrino ◽  
Sanford L. Boye ◽  
Kathryn M. H. Fransen ◽  
Jennifer M. Noel ◽  
Frank M. Dyka ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

Although gene therapy for CNS diseases shows promise in cell and animal investigations, most human trials have failed to satisfy the requisite requirements. Finding novel techniques to boost the efficacy of gene therapy in treating CNS diseases is still crucial. A growing number of clinical trials have proved the efficacy and safety of using AAV vectors, making AAV vector research a gene therapy hotspot. However, due to the presence of the BBB, many siRNA and DNA with potential therapeutic value are difficult to transport from peripheral circulation to the brain using AAV vectors, limiting the clinical impact of gene therapy drugs in the CNS and posing a major challenge to the field of CNS gene therapy. In early studies, AAV9 was considered the most effective AAV serotype for getting through the blood-brain barrier and transduction to central nervous system cells following intravenous injection. Aavrh10 isolated from rhesus monkeys was equal to, if not superior to, AAV9. AAV-PHP.B, a newly built capsid, exhibits 40-fold greater efficacy than AAV9 in astrocyte and neuron transduction. AAV-PHP.eB, a modified AAV-PHP.B variety, was identified to retain PHP.B's AAV-capacity to transduce astrocytes while enhancing neuronal transduction. While the four serotypes AAV9, AAVrh10, AAV-PHP.B, and AAV-PHP.eB have been validated to penetrate mice's BBB following intravenous injection, the number of AAV vectors that can do so is low. Moreover, the manner in which AAV vectors penetrate the BBB remains unclear. To promote efficient gene therapy for CNS diseases, it is still important to test new vectors with more efficient crossing abilities and understand their crossing processes. In addition to technical challenges, AAV vectors in treating CNS diseases may be limited by cautious attitudes to innovative treatments. Continued advances in AAV vector research, together with early clinical trial outcomes, might help researchers achieve the full potential of AAV-based CNS disease therapies.


Sign in / Sign up

Export Citation Format

Share Document