scholarly journals Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway

Aging ◽  
2020 ◽  
Author(s):  
Guoli Shao ◽  
Xulong Fan ◽  
Pusheng Zhang ◽  
Xuewen Liu ◽  
Lei Huang ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3644
Author(s):  
Daeun You ◽  
Yisun Jeong ◽  
Sun Young Yoon ◽  
Sung A Kim ◽  
Eunji Lo ◽  
...  

Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kaping Lee ◽  
Qiufan Zheng ◽  
Qianyi Lu ◽  
Fei Xu ◽  
Ge Qin ◽  
...  

Cell Cycle ◽  
2020 ◽  
Vol 19 (24) ◽  
pp. 3622-3631
Author(s):  
Jiazhe Liu ◽  
Hongchang Li ◽  
Anwei Mao ◽  
Jingfeng Lu ◽  
Weiyan Liu ◽  
...  

2014 ◽  
Vol 35 (10) ◽  
pp. 2254-2263 ◽  
Author(s):  
Brock Humphries ◽  
Zhishan Wang ◽  
Aaron L. Oom ◽  
Theresa Fisher ◽  
Dongfeng Tan ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Neng Wang ◽  
Gulizeba Muhetaer ◽  
Xiaotong Zhang ◽  
Bowen Yang ◽  
Caiwei Wang ◽  
...  

Sanguisorba officinalis L. (SA) is a common herb for cancer treatment in the clinic, particularly during the consolidation phase to prevent occurrence or metastasis. Nevertheless, there are limited studies reporting the molecular mechanisms about its anti-metastatic function. It is well demonstrated that autophagy is one of the critical mechanisms accounting for metastasis and anti-cancer pharmacological actions of Chinese herbs. On the threshold, the regulatory effects and molecular mechanisms of SA in suppressing autophagy-related breast cancer metastasis were investigated in this study. In vitro findings demonstrated that SA potently suppressed the proliferation, colony formations well as metastasis process in triple-negative breast cancer. Network and biological analyses predicted that SA mainly targeted caveolin-1 (Cav-1) to induce anti-metastatic effects, and one of the core mechanisms was via regulation of autophagy. Further experiments—including western blotting, transmission electron microscopy, GFP-mRFP-LC3 immunofluorescence, and lysosomal-activity detection—validated SA as a potent late-stage autophagic inhibitor by increasing microtubule-associated light chain 3-II (LC3-II) conversion, decreasing acidic vesicular-organelle formation, and inducing lysosomal dysfunction even under conditions of either starvation or hypoxia. Furthermore, the anti-autophagic and anti-metastatic activity of SA was Cav-1-dependent. Specifically, Cav-1 knockdown significantly facilitated SA-mediated inhibition of autophagy and metastasis. Furthermore, hypoxia inducible factor-1α (Hif-1α) overexpression attenuated the SA-induced inhibitory activities on Cav-1, autophagy, and metastasis, indicating that SA may have inhibited autophagy-related metastasis via Hif-1α/Cav-1 signaling. In both mouse breast cancer xenograft and zebrafish xenotransplantation models, SA inhibited breast cancer growth and inhibited late-phase autophagy in vivo, which was accompanied by suppression of Hif-1α/Cav-1 signaling and the epithelial-mesenchymal transition. Overall, our findings not only indicate that SA acts as a novel late-phase autophagic inhibitor with anti-metastatic activities in triple-negative breast cancer, but also highlight Cav-1 as a regulator in controlling late-phase autophagic activity.


Sign in / Sign up

Export Citation Format

Share Document