Cancer Cell Proliferation
Recently Published Documents





2021 ◽  
Steven Pelech ◽  
Curtis Gallagher ◽  
Catherine Sutter ◽  
Lambert Yue ◽  
John Kerwin ◽  

As part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Bhargava et al., 2016) that described how we intended to replicate selected experiments from the paper "RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth" (Hatzivassiliou et al., 2010). Here we report the results. We found two unrelated RAF inhibitors, PLX4720 or GDC-0879, selectively inhibited BRAF(V600E) cell proliferation, while the MEK inhibitor, PD0325901, inhibited BRAF(V600E), wild-type RAF/RAS, and mutant RAS cancer cell proliferation, similar to the original study (Figure 1A; Hatzivassiliou et al., 2010). We found knockdown of CRAF, but not BRAF, in mutant RAS cells attenuated the phospho-MEK induction observed after PLX4720 treatment, similar to the original study (Figure 2B; Hatzivassiliou et al., 2010). The original study reported analogous results with GDC-0879, which was not observed in this replication, although unexpected control results confound the interpretation. We also attempted a replication of an assay with recombinant proteins to test the differential effect of RAF inhibitors on BRAF-CRAF heterodimerization (Figure 4A; Hatzivassiliou et al., 2010). Although we were unable to conduct the experiment as planned, we observed differential binding of BRAF by RAF inhibitors; however, it was between BRAF and beads, independent of CRAF. While these data were unable to address whether, under the conditions of the original study, the same observations could be observed, we discuss key differences between the original study and this replication that are important to consider for further experiments. Finally, where possible, we report meta-analyses for each result.

2021 ◽  
Vol 8 ◽  
Zhao-wei Gao ◽  
Chong Liu ◽  
Lan Yang ◽  
Ting He ◽  
Xia-nan Wu ◽  

Background: Secreted protein acidic and rich in cysteine (SPARC) plays an important role in cancer development. The roles of SPARC in the liver hepatocellular carcinoma (LIHC) are unclear.Methods: GEPIA2 and UALCAN were used to analyze the SPARC mRNA expression levels in LIHC based on the TCGA database. The GEO database was used to verify the analysis results. Immunohistochemical (IHC) analysis was used to investigate the SPARC protein levels in LIHC tissues. The Kaplan–Meier (KM) plotter was used to analyze the correlation between SPARC and prognosis. The serum SPARC levels were measured by ELISA. CCK8 and murine xenograft models were used to investigate the effect of SPARC on the liver cancer growth in vitro and in vivo. SPARC-correlated genes were screened by LinkedOmics.Results: Based on the TCGA and GEO databases, the analysis showed that the SPARC mRNA expression levels were increased in tumor tissues and peripheral blood mononuclear cell (PBMC) from LIHC compared to normal controls. The IHC analysis showed an increased level of SPARC in LIHC tissues compared to adjacent non-tumor tissues. However, we found that the serum SPARC levels were lower in LIHC than those in healthy controls. The KM plotter showed that there was no significant correlation between the SPARC mRNA levels and overall survival. However, in sorafenib-treated LIHC patients, the high SPARC expression predicts favorable prognosis. Furthermore, the endogenous SPARC overexpression promotes liver cancer cell proliferation in vitro and tumor growth in vivo, while there was no significant effect of exogenous SPARC treatment on liver cancer cell proliferation. Function enrichment analysis of SPARC-correlated genes indicated a critical role of interaction with an extracellular matrix in SPARC-promoting cancer cell proliferation.Conclusion: SPARC mRNAs were increased in LIHC tumor tissues, and SPARC overexpression may promote the liver cancer growth. Further studies are needed to clarify the potential prognostic value of SPARC, both in tissues and in circulation.

BioImpacts ◽  
2021 ◽  
Ysrafil Ysrafil ◽  
Indwiani Astuti

Introduction: MicroRNAs (miRNAs) are short-sequence RNAs that regulate gene expression by targeting messenger RNAs (mRNAs). Recent studies reveal that miRNA-324-5p plays an important role in worsening the ovarian cancer prognosis when the expression is very high. This study aimed to develop a miRNA targeted therapy by targeting the miRNA-324-5p function as a miRNA-324-5p inhibitor. Methods: Chitosan nanoparticles were used for antimiRNA-324-5p delivery into SKOV3 cell lines formulated by ionic gelation method. Antiproliferative effect of CS-NPs-antimiRNA was assessed by the MTT Assay. A mechanism study assessed the anticancer effect of the formula. In silico analysis used miRTar.Human and StarmiRDB combined with Genecard to predict the target genes of antimiR. Hawkdock web server was used to analyze protein-protein interactions that were further validated by quantitative polymerase chain reaction (qPCR). Results: The results of qPCR analysis showed endogenous miRNA-324-5p decreased after 24-hour transfection of antagonist miRNA. Furthermore, the MTT assay results showed that antimiRNA was able to inhibit SKOV3 cell proliferation (80 nM 68.13%, P<0.05). In silico analysis found miRNA-324-5p can regulate MEN1 and indirectly repress Gli1 mRNA. Validation results confirmed antimiR can decrease GLI1 mRNA expression. Conclusion: Our results showed antimiRNA-324-5p can act as a microRNA-based therapy to inhibit ovarian cancer proliferation by the reduction of GLI1 expression.

2021 ◽  
Vol 21 (1) ◽  
Hao Yang ◽  
Yunrui Guo ◽  
Yecai Zhang ◽  
Decai Wang ◽  
Guoyun Zhang ◽  

Abstract Background Propofol is commonly used for anesthesia during surgery and has been demonstrated to inhibit cancer development, which is shown to be associated with deregulation of non-coding RNAs (ncRNAs). The objective of this study was to explore the role of circular RNA mucin 16 (circ_MUC16) in Propofol-mediated inhibition of ovarian cancer. Methods The expression of circ_MUC16, microRNA-1182 (miR-1182) and S100 calcium-binding protein B (S100B) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). The expression of S100B protein was checked by western blot. Cell proliferation was assessed by 3-(4, 5-di methyl thiazol-2-yl)-2, 5-di phenyl tetrazolium bromide (MTT) assay and colony formation assay. Glycolysis metabolism was assessed by glucose consumption, lactate production and ATP level. Cell migration and cell invasion were assessed by transwell assay. Cell migration was also assessed by wound healing assay. Animal study was conducted in nude mice to determine the role of circ_MUC16 in vivo. The relationship between miR-1182 and circ_MUC16 or S100B was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Propofol inhibited ovarian cancer cell proliferation, glycolysis metabolism, migration and invasion, which were partly recovered by circ_MUC16 overexpression. Circ_MUC16 was downregulated in Propofol-treated ovarian cancer cells. Besides, circ_MUC16 knockdown enhanced the effects of Propofol to further inhibit tumor growth in vivo. MiR-1182 was a target of circ_MUC16, and circ_MUC16 knockdown-inhibited cell proliferation, glycolysis metabolism, migration and invasion were partly restored by miR-1182 inhibition. In addition, S100B was a target of miR-1182, and miR-1182-suppressed cell proliferation, glycolysis metabolism, migration and invasion were partly restored by S100B overexpression. Conclusion Circ_MUC16 overexpression alleviated the effects of Propofol to promote the aggressive behaviors of ovarian cancer by targeting the miR-1182/S100B network.

Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5946
Ting-Yu Chang ◽  
Cheng-Tien Wu ◽  
Meei-Ling Sheu ◽  
Rong-Sen Yang ◽  
Shing-Hwa Liu

CARD-recruited membrane-associated protein 3 (CARMA3) is overexpressed in various cancers and is associated with cancer cell proliferation, metastasis, and tumor progression; however, the underlying mechanisms of CARMA3 in colorectal cancer (CRC) metastasis remain unclear. Here, we found that higher CARMA3 expression was correlated with poor overall survival and metastasis in CRC patients from the TNMplot database and Human Tissue Microarray staining. Elevating CARMA3 expression promoted cell proliferation, epithelial-mesenchymal transition (EMT) induction, migration/invasion abilities, sphere formation, and cancer stem cell markers expression. Knockdown of CARMA3 decreased these processes via the EMT-related transcription factor Slug. Moreover, CARMA3 depletion significantly reduced tumor growth in mice that were consistent with the in vitro results. CRC migration/invasion could be regulated by CARMA3/YAP/Slug signaling axis using genetic inhibition of Yes-associated protein (YAP). Interestingly, CARMA3 induced activation of nuclear factor (NF)-κB through YAP expression, contributing to upregulation of Slug. YAP expression positively correlated with CARMA3, NF-κB, and Slug gene expression and poor clinical outcomes in CRC patients. Our findings demonstrate for the first time that CARMA3 plays an important role in CRC progression, which may serve as a potential diagnostic biomarker and candidate therapeutic target for CRC treatment.

2021 ◽  
Toni Petan ◽  
Thomas O. Eichmann ◽  
Robert Zimmermann ◽  
Anja Pucer Janež ◽  
Jana Gerstmeier ◽  

Lipid droplets are dynamic organelles with a central role in fatty acid metabolism. They protect cells from lipotoxicity by sequestering excess fatty acids but also provide fatty acids for metabolic reactions and signalling events. Here we show that lipid droplet turnover in cancer cells is required for production of ω-3 and ω-6 polyunsaturated fatty acid (PUFA)-derived inflammatory lipid mediators, including eicosanoids and specialised pro-resolving mediators. We show that incorporation of PUFAs into triglycerides mediated by diacylglycerol acyltransferase 1 (DGAT1), and their release by adipose triglyceride lipase (ATGL), are required for cyclooxygenase- and lipoxygenase-dependent lipid mediator production and cancer cell proliferation. The human group X secreted phospholipase A2 (hGX sPLA2) drives the delivery of membrane-derived PUFAs into lipid droplets, while ATGL promotes the incorporation of lipid droplet-derived PUFAs into phospholipids. The group IVA cytosolic PLA2 (cPLA2α) acts on membrane phospholipids and complements ATGL in the regulation of PUFA trafficking between phospholipids and triglycerides. This study identifies lipid droplets as essential cellular hubs that control PUFA availability for production of lipid mediators involved in inflammation and tumorigenesis.

Sign in / Sign up

Export Citation Format

Share Document