scholarly journals Big Data analysis: Intelligent Transportation Development Engine

2014 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Qin Xiao

<p>With the development of the times, people have unwittingly entered the information age. The information age has become a large amount of data bursting characteristics of the new era. In this feature people still seek to improve the production and quality of life. For the development of intelligent transportation needs of people's lives and make the real world, but in the construction of intelligent transportation among a large number of information data also adds to its change and difficulty, how to build an intelligent era of big data, security, low-cost, efficient and convenient of intelligent transportation systems become today people study. From the era of big data to intelligent traffic changes brought advantages and disadvantages, the era of big data to bring intelligent traffic problems and challenges, as well as the integration platform for massive data intelligent transportation intelligent transportation demand and large data structures has done a simple elaborate, it can provide some suggestions for areas of research that scientists.</p>

Author(s):  
Aleksandra Kostic-Ljubisavljevic ◽  
Branka Mikavica

With the development of light emitting diodes (LEDs), the communication in visible light spectrum, visible light communication (VLC), becomes an alternative to the existing wireless technologies. Integration of VLC systems with intelligent transportation systems (ITS) can significantly improve many aspects of transportation and traffic. The use of unlicensed bandwidth and wider implementation of VLC LED lighting, both in infrastructure and in vehicles, provide an energy-efficient data transmission with sufficiently large data rates at low cost. The application of VLC systems is still at an early stage of the development. However, due to numerous advantages, the wider adoption of VLC systems is expected in near future. This chapter presents an analysis of the possibilities of VLC application in ITS scenarios. Main characteristics of VLC in ITS in terms of architecture, modulation and standardization are addressed. Some challenges and open issues are also emphasized.


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


2021 ◽  
Vol 03 (01) ◽  
pp. 33-41
Author(s):  
Vittorio Astarita ◽  
Vincenzo Pasquale Giofrè ◽  
Giuseppe Guido ◽  
Alessandro Vitale

This paper intends to explore the convergence of some technological innovations that could lead to new cooperative Intelligent Transportation Systems (ITS). The technologies that might soon converge and lead to some new developments are: the Blockchain Technology (BT) concept, Internet of Things (IoT) and Connected and Automated Vehicles (CAV). Advantages and disadvantages of the new concepts founding a new ITS system are discussed in this conceptual paper. Blockchain technology has been recently introduced and many research ideas have been presented for application in the transportation sector. In this paper, we discuss a system that is based on a dedicated blockchain, able to involve both drivers and city administrations in the adoption of promising and innovative technologies that will create cooperation among connected vehicles. The proposed blockchain-based system can allow city administrators to reward drivers when they are willing to share travel data. The system manages in a special way the creation of rewards which are assigned to drivers and institutions participating actively in the system. Moreover, the system allows keeping a complete track of all transactions and interactions between drivers and city management on a completely open and shared platform. The main idea is to combine connected vehicles with BT to promote Cooperative ITS use, a better use of infrastructures and a more sustainable eco-system of cryptocurrencies. A short description of BT is introduced to evidence energy problems of sustainability in the implementation of Proof of Work (PoW) that is adopted by many blockchains.


2013 ◽  
Vol 63 (3) ◽  
Author(s):  
Jelena Fiosina ◽  
Maxims Fiosins, Jörg P. Müller

The deployment of future Internet and communication technologies (ICT) provide intelligent transportation systems (ITS) with huge volumes of real-time data (Big Data) that need to be managed, communicated, interpreted, aggregated and analysed. These technologies considerably enhance the effectiveness and user friendliness of ITS, providing considerable economic and social impact. Real-world application scenarios are needed to derive requirements for software architecture and novel features of ITS in the context of the Internet of Things (IoT) and cloud technologies. In this study, we contend that future service- and cloud-based ITS can largely benefit from sophisticated data processing capabilities. Therefore, new Big Data processing and mining (BDPM) as well as optimization techniques need to be developed and applied to support decision-making capabilities. This study presents real-world scenarios of ITS applications, and demonstrates the need for next-generation Big Data analysis and optimization strategies. Decentralised cooperative BDPM methods are reviewed and their effectiveness is evaluated using real-world data models of the city of Hannover, Germany. We point out and discuss future work directions and opportunities in the area of the development of BDPM methods in ITS.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tianqi Zhou ◽  
Jian Shen ◽  
Yongjun Ren ◽  
Sai Ji

Intelligent transportation systems (ITS) have always been an important application of Internet of Things (IoT). Today, big data and cloud computing have further promoted the construction and development of ITS. At the same time, the development of blockchain has also brought new features and convenience to ITS. However, due to the endless emergence of increasingly advanced types of attacks, the security of blockchain-based ITS needs more attention from industry and academia. In this paper, we focus on exploring the primitives in cryptography to guarantee the security of blockchain-based ITS. In particular, the authentication, encryption, and key management schemes in cryptography are discussed. Furthermore, we propose two methods for achieving the threshold key management in blockchain-based ITS. The proposed threshold key management scheme (with threshold t ) enables various stakeholders to recover a secret if the number of participated stakeholders is at least t . It should be noted that the proposed threshold key management scheme is efficient and secure for multiple users in blockchain-based ITS, especially for the data-sharing scenario.


2018 ◽  
Vol 7 (2.18) ◽  
pp. 7 ◽  
Author(s):  
Venkata Ramana N ◽  
Seravana Kumar P. V. M ◽  
Puvvada Nagesh

Big data is a term that describes the large volume of data – both structured and unstructuredthat includes a business on a day-to-day basis including Intelligent Transportation Systems (ITS). The emerging connected technologies created around ubiquitous digital devices have opened unique opportunities to enhance the performance of the ITS. However, magnitude and heterogeneity of the Big Data are beyond the capabilities of the existing approaches in ITS. Therefore, there is a crucial need to develop new tools and systems to keep pace with the Big Data proliferation. In this paper, we propose a comprehensive and flexible architecture based on distributed computing platform for real-time traffic control. The architecture is based on systematic analysis of the requirements of the existing traffic control systems. In it, the Big Data analytics engine informs the control logic. We have partly realized the architecture in a prototype platform that employs Kafka, a state-of-the-art Big Data tool for building data pipelines and stream processing. We demonstrate our approach on a case study of controlling the opening and closing of a freeway hard shoulder lane in microscopic traffic simulation. 


Sign in / Sign up

Export Citation Format

Share Document