Seismic active earth pressure on rigid retaining walls under rotation about base considering principal-stress rotations by pseudo-static method

2019 ◽  
Vol 16 (2) ◽  
pp. 12-24
Author(s):  
Yan-Yan Cai ◽  
◽  
Yi-Tao Zhou ◽  
Wen-Ping Zhang ◽  
Xiao-Yan Zhang ◽  
...  
2018 ◽  
Vol 9 (2) ◽  
pp. 6 ◽  
Author(s):  
A. Gupta ◽  
V. Yadav ◽  
V. A. Sawant ◽  
R. Agarwal

Design of retaining walls under seismic conditions is based on the calculation of seismic earth pressurebehind the wall. To calculate the seismic active earth pressure behind the vertical retaining wall, many researchers reportanalytical solutions using the pseudo-static approach for both cohesionless and cohesive soil backfill. Design charts havebeen presented for the calculation of seismic active earth pressure behind vertical retaining walls in the non-dimensionalform. For inclined retaining walls, the analytical solutions for the calculation of seismic active earth pressure as well as thedesign charts (in non-dimensional form) have been reported in few studies for c-ϕ soil backfill. One analytical solution forthe calculation of seismic active earth pressure behind inclined retaining walls by Shukla (2015) is used in the present studyto obtain the design charts in non-dimensional form. Different field parameters related with wall geometry, seismic loadings,tension cracks, soil backfill properties, surcharge and wall friction are used in the present analysis. The present study hasquantified the effect of negative and positive wall inclination as well as the effect of soil cohesion (c), angle of shearingresistance (ϕ), surcharge loading (q) and the horizontal and vertical seismic coefficient (kh and kv) on seismic active earthpressure with the help of design charts for c-ϕ soil backfill. The design charts presented here in non-dimensional form aresimple to use and can be implemented by field engineers for design of inclined retaining walls under seismic conditions. Theactive earth pressure coefficients for cohesionless soil backfill achieved from the present study are validated with studiesreported in the literature.


2021 ◽  
Vol 12 (1) ◽  
pp. 169
Author(s):  
Hui Liu ◽  
Dezhi Kong ◽  
Wensong Gan ◽  
Bingjie Wang

The traditional method for seismic earth pressure calculation has certain limitations for retaining structures under complex conditions. For example, when the soil width is small, the results obtained by the traditional method will be much larger. Therefore, this paper assumes that the soil slip surface is a logarithmic spiral. Based on the plane strain unified strength theory formula, while also considering the soil arching effects and tension cracks, the analytical solutions of the lateral earth pressure coefficient and the active earth pressure under the earthquake action were deduced. The mechanism and distribution of seismic active earth pressure with limited width were discussed in terms of some relevant parameters. The results indicated that the seismic active earth pressure presented a “convex” nonlinear distribution along the retaining structure. As the contribution of the intermediate principal stress increased, the strength limit of the material was effectively utilized, and the earth pressure was reduced by 22.96%. The resultant force increased as the horizontal seismic coefficient increased. However, this effect was no longer evident when the wall–soil friction angle was close to the internal friction angle. The resultant force action point increased with the wall–soil friction angle, and it should be noted that ha>H/3 was true when δ/φ0>0.55. Finally, by drawing a comparison with previous studies, we verified that the method proposed in this paper is reasonable and can provide a new idea for subsequent 3D seismic earth pressure research.


Sign in / Sign up

Export Citation Format

Share Document