scholarly journals Effect of Wall Inclination on Dynamic Active Thrust for Cohesive Soil Backfill

2018 ◽  
Vol 9 (2) ◽  
pp. 6 ◽  
Author(s):  
A. Gupta ◽  
V. Yadav ◽  
V. A. Sawant ◽  
R. Agarwal

Design of retaining walls under seismic conditions is based on the calculation of seismic earth pressurebehind the wall. To calculate the seismic active earth pressure behind the vertical retaining wall, many researchers reportanalytical solutions using the pseudo-static approach for both cohesionless and cohesive soil backfill. Design charts havebeen presented for the calculation of seismic active earth pressure behind vertical retaining walls in the non-dimensionalform. For inclined retaining walls, the analytical solutions for the calculation of seismic active earth pressure as well as thedesign charts (in non-dimensional form) have been reported in few studies for c-ϕ soil backfill. One analytical solution forthe calculation of seismic active earth pressure behind inclined retaining walls by Shukla (2015) is used in the present studyto obtain the design charts in non-dimensional form. Different field parameters related with wall geometry, seismic loadings,tension cracks, soil backfill properties, surcharge and wall friction are used in the present analysis. The present study hasquantified the effect of negative and positive wall inclination as well as the effect of soil cohesion (c), angle of shearingresistance (ϕ), surcharge loading (q) and the horizontal and vertical seismic coefficient (kh and kv) on seismic active earthpressure with the help of design charts for c-ϕ soil backfill. The design charts presented here in non-dimensional form aresimple to use and can be implemented by field engineers for design of inclined retaining walls under seismic conditions. Theactive earth pressure coefficients for cohesionless soil backfill achieved from the present study are validated with studiesreported in the literature.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Minghui Yang ◽  
Bo Deng

Spaces for backfills are often constrained and narrowed when retaining walls must be built close to existing stable walls in urban areas or near rock faces in mountainous areas. The discrete element method (DEM), using Particle Flow Code (PFC-2D) software, was employed to simulate the behavior of cohesionless soil with narrow width behind a rigid retaining wall when the wall translation moved away from the soils. The simulations focused on the failure model of the soil when the movement of the wall reaches the value where active earth pressure occurs, and the shape of the sliding surface was captured. Then, based on the limit equilibrium method with the obtained slip surfaces in PFC-2D, a simplified analytical method is presented to obtain a solution of the active earth pressure acting on rigid retaining with narrow backfill width. The point of application of the active earth pressure is also obtained. The calculated values agree well with those from physical tests in the previous literature. Furthermore, the effects of the width of the backfill, internal friction angle of soil, and wall-soil friction angle on the distribution of active earth pressure are discussed.



2008 ◽  
Vol 45 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Priyanka Ghosh

This note describes a study on the seismic active earth pressure behind a nonvertical cantilever retaining wall using pseudo-dynamic analysis. A planar failure surface has been considered behind the retaining wall. The effects of soil friction angle, wall inclination, wall friction angle, amplification of vibration, and horizontal and vertical earthquake acceleration on the active earth pressure have been explored in this study. Unlike the Mononobe–Okabe method, which incorporates pseudo-static analysis, the present analysis predicts a nonlinear variation of active earth pressure along the wall. The results have been compared with the existing values in the literature.



Author(s):  
Sima Ghosh

The sliding stability of retaining wall is one of the four important stability criteria for the safe design of retaining wall. Here an attempt is made to determine the sliding stability of retaining wall under seismic loading condition supporting c- F backfill considering both soil and wall inertia using pseudo-static method. The analysis for seismic active earth pressure for that particular study is done in such a way to develop a single critical wedge surface which is more realistic. The effect of wide range of variation of parameters like angle of internal friction of soil, angle of wall friction, cohesion, adhesion, seismic acceleration are studied on normalized seismic active earth pressure variation, wall inertia factor, thrust factor, combined dynamic factor and dynamic factor of safety against sliding. Results are presented in terms of formula for critical wedge surface and seismic active earth pressure and non-dimensional charts for the variation of different factors. Finally, a failure zone against sliding is recommended in the Factor of safety against sliding charts.



2013 ◽  
Vol 3 (5) ◽  
pp. 526-531 ◽  
Author(s):  
A. Sekkel ◽  
M. Meghachou

This work treats the physical modeling of failure mechanisms by active earth pressure. This last is developed by retaining wall movement. A lot of research showed that wall displacement has a significant effect on active earth pressure. A good comprehension of active earth pressure phenomenon and its failure mechanisms help us to better conceive retaining walls. The conception of a small-scale model allowed the realization of active earth pressure tests, while displacing the mobile wall toward the outside of the massif. The studied material is that of Schneebeli; light two-dimensional material made of cylindrical plastic rollers, simulating granular non-cohesive soil. The evolution of shearing zones under continuous and discontinuous displacement modes of mobile walls by correlation pictures allows the investigation of the localization of deformations and failure mechanisms.



2012 ◽  
Vol 19 (11) ◽  
pp. 3298-3304 ◽  
Author(s):  
Shao-jun Ma ◽  
Kui-hua Wang ◽  
Wen-bing Wu


2013 ◽  
Vol 275-277 ◽  
pp. 1154-1157
Author(s):  
Yun Lian Song ◽  
Si Li ◽  
Jian Ran Cao

Stability problem of gravity retaining wall structure was researched, and a simplified formula of the active earth pressure Ea was turned out for the convenience of the program design. The anti-slide safety factor K0 and anti-overturning safety factor Kc were derived based on different positions of slip plane of retaining wall. This work is the basis of the reliability calculating and program design, for these formulas must be used in anti-slide and anti-overturning safety failure mode in program compiling. On the basis of the known parameters such as wall type, wall dimensions, material parameters, external load, and so on, the program can automatically calculate K0 and Kc, their corresponding failure probability Pf and reliability index β can easily be calculated in later analysis. The research content provide a convenient calculation method, which is used to calculate the Ea and K0 and Kc and Pf and β of the actual retaining walls engineering.





Sign in / Sign up

Export Citation Format

Share Document