Journal of Civil Engineering Science and Technology
Latest Publications


TOTAL DOCUMENTS

171
(FIVE YEARS 47)

H-INDEX

3
(FIVE YEARS 1)

Published By Unimas Publisher

2462-1382

2021 ◽  
Vol 12 (2) ◽  
pp. 189-202
Author(s):  
Bishir Kado ◽  
Shahrin Mohammad ◽  
Yeong Huei Lee ◽  
Poi Ngian Shek ◽  
Mariyana Aida Ab Kadir

Reduction in self-weight and achievement of full fire resistance requirements are some of the important considerations in the design of high-rise structures. Lightweight concrete filled steel tube (CFST) column provides an alternative method to serve these purposes. Recent studies on lightweight CFST columns at ambient temperature have revealed that foamed concrete can be a beneficial and innovative alternative material. Hence, this study investigates the potential of using foamed concrete in circular hollow steel columns for improving fire resistance. A series of nine fire test on circular unfilled hollow and foamed concrete filled hollow section column were carried out. ISO 834 standard fire exposure test were carried out to investigate the structural response of these columns under fire. The main parameters considered are load level and foamed concrete density; foamed concrete density used are 1500 kg/m3 and 1800 kg/m3 at 15%, 20%, and 25% load level. All the columns tested are without any external fire protection, with concentrically applied load under fixed-fixed boundary conditions. The columns dimension was 2400 mm long, 139.7 mm diameter and steel tube thickness of 6 mm. The fire test result showed that foamed concrete increases the fire resistance of steel hollow column up to an additional 16 minutes. The improvement is more at load level above 15%, and the gain in fire resistance is about 71% when 1500 kg/m3 density foamed concrete is used. Generally, foamed concrete filled steel hollow column demonstrate a good structural fire behavior, based on the applied load and foamed concrete density. Also, inward local buckling was averted by filling the steel hollow column with foamed concrete. General method for composite column design in Eurocode 4 adopted to calculate the axial buckling load of 1500 kg/m3 foamed concrete filled columns.  These type of columns can be used for structures like airports, schools, and stadiums; taking the advantage of exposed steel for aesthetic purpose and high fire resistance. It can also be used for high rise structures; taking advantage of high fire resistance and reduction in self-weight of a structure.


2021 ◽  
Vol 12 (2) ◽  
pp. 124-140
Author(s):  
Md. Nazmul Haque ◽  
Arpita Bakshi ◽  
Fathum Mobin

This paper focuses on delineation of ecological viability due to changes of household energy consumption behavior. Then the research also explored the factors (Environmental resources) behind growing ecological footprint. For having a lot of natural elements and high residential characteristics ward-4 of Khulna city was selected as study area. The research followed a three step approaches. At first, geographical and topographical data are analyzed in geo-spatial environment. Which helped to draw the Environmental Performance framework. Geographical Information system (GIS) helps to evaluate the current scenario and past scenario of the resource compatibility of some existing assets. The second phase is all about assessing the residents’ behavior towards energy consumption practice and the influencing factors behind this. The third part showed the environmental performance index (EPI) that include both the socio-economic problems and environmental circumstances using NSA method under the explanatory variables of environmental impact assessment (EIA). Essential natural assets especially water body and the vegetation has decreased at tremendous rate in recent time in Ward-4 with the enhancement of buildup area. This research is totally based on stakeholder perception towards energy consumption pattern and all the further assessment depend on this concept. To assess the behavioral changing factors, it seems that the correlation between income range and energy consumption is positive and linear. It represents that people want to switch high energy consumption appliances with growing wealth. Third phase assess environmental health (measure threat to human health) and ecological vitality (measures ecosystem service and natural resources) under environmental performance index. As the study is mostly involved local residents of study area so the method of neighborhood sustainability Assessment (NSA) is combined with EPI method for scoring the indicators. The approximate score of Environmental Performance Index (EPI) is around 53 percent demarcating the areas existing situation is in moderate rate and diverted from the standard value. This research draw attention to find out environment viability of ward-4 by measuring environmental stress to human health and ecosystem for providing practical guidance to government that aspire to move towards sustainable future.


2021 ◽  
Vol 12 (2) ◽  
pp. 168-178
Author(s):  
Ajay Krishnan ◽  
Ajithkumar S ◽  
Manishankar G ◽  
Upendra K ◽  
Kabilan A ◽  
...  

In India, Project Portfolio Management (PPM) is in practice as a tool for prioritizing and managing real estate projects in construction organizations. But due to insufficient funding, improper judgment of experts during the crisis situation, the selection of optimal project portfolio prototype can be viewed as a risk based decision making process involving various risk factors. The objective of this study is to analyze the importance of project portfolio management and the risks associated with it in the construction industry taking into account the impact of novel corona virus COVID 19. This research identifies the adoption of more consistent project governance, risk management techniques and way more careful project portfolio management as the core area of study. A conceptual framework for Project Portfolio Management is also designed after analyzing various parameters of Project Portfolio Management of construction industry with the help of Bayesian framework. The key motive for undertaking this part of examination on real estate sector of Indian construction industry in southern part of India to reduce the impacts and increase the return on investment from the projects by mitigating the effect of risk factors associated in the projects.  Project Portfolio Management tools and techniques are very useful for managing multiple construction projects.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-123
Author(s):  
Md. Belal Hossain ◽  
Md. Roknuzzaman ◽  
Md. Asib Biswas ◽  
Motaharul Islam

Soft cohesive soils have low strength, high plasticity, and a large expansion ratio making them unsuitable as a road subgrade. This study aims to evaluate the potential of power plant waste (fly ash) from the Barapukuria Thermal Power Plant, Dinajpur, Bangladesh to improve the characteristics of such soft cohesive soil. X-ray fluorescence test conducted to classify the power plant fly ash and the type was identified as “Class F” according to “American Association of State Highway and Transportation Officials” and "American Society for Testing and Materials". Laboratory tests were conducted on clay soil obtained from Dinajpur region modified by the collected power plant waste. As the Class F fly ash has low cementing property, 3% cement was added with it. Cement mixed soil was modified with 5%, 10%, 15%, and 20% fly ash respectively. Specific Gravity, Atterberg limits, Modified Proctor Compaction, Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests were conducted. The study reveals that there is a decrease in specific gravity, dry density, and plasticity index with the addition of power plant waste. On the other hand, there is an increase in optimum moisture content, UCS, and CBR value. UCS and CBR values were found to be improved remarkably. Soaked CBR value of soil is found to be improved from 2.79% to 92.59% when treated with 5% fly ash and 3% cement. The UCS value of this modified soil was 560.36 kPa. The stabilized soil thus obtained meets the requirements for subgrade as specified by the Local Government Engineering Department (LGED)’s design manual (2005), Bangladesh. Since there is a possibility of leaching by dumping a large quantity of fly ash in the pond, the use of fly ash from the power plants to improve soft cohesive soils for road subgrade may be an environment-friendly alternative to its disposal in the ponds.


2021 ◽  
Vol 12 (2) ◽  
pp. 141-159
Author(s):  
Mulugeta Fentaw ◽  
Esayas Alemayehu ◽  
Anteneh Geremew

Understanding the behavior of expansive soil and adopting the appropriate control measures should be great for civil engineers. Extensive research has been going on to find the solutions associated with problems of expansive soils. There have been many methods available to control the expansiveness of these soils. The removal of expansive soils and replacement with suitable material has been widely practiced worldwide. Reasonable material is available within economic distances; however, suitable materials is not readily an available in urban areas for borrowing, which has to be hauled from a long distance. Instead of borrowing suitable soil from a long distance away, after stabilization with cost effective and readily available industrial and agricultural waste materials, it is economical to use locally available plastic soil. Such wastage products are also used to minimize environmental hazards such as CO2 in the atmosphere to minimize the percentage of industrial products used for stabilization, such as cement. Marble dust (MD), an industrial waste product, Rice husk ash (RHA), agricultural waste products, and cement are industrial products in this present study. The general objective of study was to examine the effects of poor subgrade soil stabilization using the mixture of MD, RHA and cement to enhance sub-standard soil engineering properties to be used as subgrade materials. Moisture content, Atterberg limits, grain size analysis, soil classification, free swell index, basic gravity, compaction (maximum dry density, optimum moisture content) and CBR value test have been calculated in this analysis. The design of the analysis followed by the experimental method of study were adopted, which started with sample selection. A disturbed samples was collected from the pit at a depth of 1.5 m to 2m from ground level in order to avoid the inclusion of organic matter by considering the free swell index value and observation was considered. The chemical analysis of MD and RHA was conducted in laboratory and the main oxides are (SiO2+Al2O3+Fe2O3) were 70.13% for RHA and 42.43% for MD. The RHA chemical properties satisfy the requirement, while MD did not meet the requirement of ASTM C 618. The Gomata Teachers’ Condominium (GTC) soil sample laboratory result have 42.72% plastic index (PI), 85% free swell index and its CBR value of 2.265%. The Millennium Secondary school (MSS) soil sample has a 48.79% PI, 87% free swell index and 2.121% CBR value. Therefore this soil samples are highly expansive were checked before any stabilizations process based on  their plasticity index and CBR value based on standard specification requirement , then stabilization was achieved by stabilization by proposed (0,8MD,6MD+2C,4MD+4C,2MD+6C,8C,6MD+2RHA, 4MD+4RHA, 2MD+6RHA,8RHA,6RHA+2C,4RHA+4C,2RHA+6C,2MD+2RHA+4C,4MD+2RHA+2C, 2MD+4RHA+2C) proportion. Then LL, PI, OMC, and CBR decreased as the cement ratio increased, while PL, MDD and CBR value increases instead of MD and RHA increases, however, as MD and RHA increase, the quantity of cement decreases. The laboratory outcome was compared with the requirement of Ethiopian road authority standard, ASTM and AASHTO. Based on this study all mixing stabilizers (MD-cement, RHA-cement, MD-RHA, MD-RHA-cement) and 8% of RHA and cement fulfill the ERA standard specification requirements for its CBR swell value. However, 8% of marble dust alone does not fulfill the Ethiopia road authority requirements for CBR swell. The MD and RHA standalone does not improving some of the engineering properties of soil samples used for subgrade construction. However, they mixed with different percentages of cement can effectively stabilizer for this expansive soil for road sub-grade construction.


2021 ◽  
Vol 12 (2) ◽  
pp. 213-227
Author(s):  
Md. Jahir Uddin ◽  
Faisal Jahangir Swapnil

Land Surface Temperature (LST) is a key phenomenon in worldwide climate change. The knowledge of surface temperature is important to a range of issues and themes in earth sciences, central to urban climatology, global environmental change, and human-environment interactions. In this study, LST for Kushtia District, Khulna division, Bangladesh, is derived using Arc-GIS software version from the images of Landsat 8 Optical Land Imager (OLI) of 30 m resolution and Thermal Infrared Sensor (TIR) data of 100 m resolution, Landsat-7 Enhanced Thematic Mapper plus (ETM+) with opto-mechanical sensor and Spatial Resolution of 30 m (60 m – thermal, 15-m panchromatic) and Landsat-5 Thematic MAPPER (TM) satellites. A total time span of 20 years, starting from 1998 to 2018 is selected. At every 5 years interval starting from 1998, air temperature, LST, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) have been calculated. Using the equation from Landsat user’s handbook, the digital number of thermal infrared band is converted into spectral radiance. Plank’s Inverse Function is used to obtain the effective at-sensor brightness temperature from the spectral radiance. The surface emissivity based on NDVI classes is used to retrieve the final LST. The study reveals that LST is increasing with the passage of time. Maximum values of LST are found along the North-East and North-West regions of Kushtia district. NDVI is found to have positive correlation with LST. Also, it has been found that NDWI has little influence on LST. The reasons behind the rise and fall of LST in different years are explained from changes in total vegetation coverage and total abundance of water body coverage viewpoint. The spatial distribution figures of air temperature, LST, NDVI and NDWI could be used as a guideline for urban planning, strategies for quality improvement of urban environment and a smart solution to the reduction of LST.


2021 ◽  
Vol 12 (2) ◽  
pp. 288-241
Author(s):  
Mahdi Mansur Mahi ◽  
Md. Shahriar Sharif ◽  
Rhyme Rubayet Rudra ◽  
Md. Nazmul Haque

The goal of this study is to examine the effects of Rohingya Influx specially on vegetation land cover and LST in Teknaf Peninsula, Cox’s Bazar, Bangladesh over time. For doing so, the research followed three steps. Firstly, the primary and secondary data were collected from prescribed sources like LANDSAT 8 images from Earth Explorer (USGS) and the Shapefiles were collected from secondary sources. Then, Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) functions are explored in geospatial environment to assess the effect of deforestation on the region. Finally, A correlation is shown between LST and NDVI for making a decision from the environmental perspective. The findings state that, the region around the Rohingya Camps progressively lost its vegetation density as a result of increasing deforestation. According to this analysis, there was 87.87 % vegetation cover in 2013, which gradually decreased before the Rohingya Invasion in 2017. After the incident in 2018, vegetation cover drops to 75.67 %. Similarly, area with no vegetation increased more rapidly than others. The outcome showed that the transition in land cover was quicker and more noticeable in recent time. As a result, the LST has been increasing over the years. According to the study, there were around 8.71 % of areas with high temperatures in 2013, which increased to 36.86 % in 2020. It indicates that a large quantity of vegetation has been lost as a result of deforestation, and the LST of this region has changed dramatically. Furthermore, data was examined by Union to assess the individual effect from 5 Rohingya camps, and it was discovered that the situation in Teknaf Union is terrible, while the situation in Baharchhara Union is comparably better. Finally, the results of the research encourage an extensive regional environmental policy to eradicate this problem. To recompense the loss of nature govt. and responsible department should take necessary steps like hill conservation or tree plantation.


2021 ◽  
Vol 12 (2) ◽  
pp. 203-212
Author(s):  
Khair Jadaan ◽  
Duha Alsarayreh ◽  
Mohammed Obaid

The subjective aspect of assessing Road Traffic Noise (RTN) in urban agglomerations is crucial, as it takes into consideration the sensitivity and specific reactions of residents to Road Traffic noise (RTN) in their living environments. This paper aims to present a detailed sociological study initiated to measure the level of public awareness regarding RTN and estimate the impact of RTN disturbance on RTN disturbance their daily activities. For this purpose, an attitudinal survey was conducted using a predesigned questionnaire with limited noise measurements. The questioners were distributed to the neighboring residents of one of the most congested arterial roads in Amman, Jordan’s capital. The questioner firstly focused on evaluating the awareness of respondents of the problem magnitude and its environmental and health impacts, and secondly, assessing the effects of RTN as perceived by the respondents on different daily activities. The analysis of the collected data found that around 50% of respondents believe that RTN impacts the environment, and 60% believe that RTN affects human health, while 38% consider changing their place of residence and moving to a quieter place. The main results of the study showed that RTN causes annoyance to people while performing their daily activities, especially while studying and resting. Further main reported impacts included causing fatigue (64%), anxiety (75%), nervousness (87%), focus reduction (89%), and discomfort (90%).


2021 ◽  
Vol 12 (2) ◽  
pp. 91-111
Author(s):  
Yisak Kibru ◽  
Anteneh Geremew ◽  
Biruk Yigezu

The main problems in road construction and maintance work in Ethiopia  availability of a large amount of appropriate quality materials in road construction sites, aggregates in different size fractions are not readily obtainable, necessitating their procurement from long distances, thereby causing an exorbitant increase in construction costs. One of the main problems in constructing the asphalt paving mixture is obtaining a sufficient amount of filler material from crushing fine rock material and low percent using ordinary Portland cement (OPC), hydrated lime (HL) and marble dust. To overcome this problem, it is important to come across alternative filler material to address this gap using naturally available material. Currently, renewed attention has been given to the use of ‘waste’ materials instead of conventional aggregates in pavement construction. This research study investigates the potential use of ‘Enset’ fiber ash as a partial replacement of conventional filler material in hot mix asphalt supported by experimental laboratory investigation. In order to achieve this study, purposive sampling techniques were adopted to select the sample size and location. The study evaluated the potential of ‘Enset’ fiber ash as filler for the design of dense-graded hot mix asphalt by referencing traditional filler control mix procedures based on standard specifications, and a crush rock filler was utilized as a conventional filler material as a control for comparison. The Marshal Stability and Rutting Test (RT) was conducted to determine the HMA specimen's performance. Several HMA specimens were prepared using aggregate blend according to ASTM D 1559 with four different percentages of ‘Enset’ fiber ash (EFA) of 15%, 25%, 35% and 45% filler replacement the total filler weight used in the control mix. Specimens were prepared and tests performed according to EN 12697-22 procedure-B for rutting test. All HMA properties were taken at 4% air void and determined their optimum bitumen content (OBC). Almost the same result with the control mix was observed in the study at 15% and 25% of the ‘Enset’ fiber ash (EFA) replacement. However, higher Marshall Stability, a lower void filled with asphalt, better flow, a good void in mineral were observed at 25% ‘Enset’ fiber ash (EFA) replacement. At this rate, the rutting performance is less than that of the control mix but is within the specifications of 2.78mm and 2.9 mm of rutting depth less than 6mm that satisfies the EN 13108 requirement. As a result, Enset fiber ash filler can replace traditional filler material up to 25% of the total filler weight used in this study. It was recommended to use ‘Enset' fiber ash (EFA) as a filler material as a partial replacement in a bituminous paving mixture up to the specificed percentage by weight replacement.


2021 ◽  
Vol 12 (2) ◽  
pp. 160-167
Author(s):  
Siti Shahirah Suhaili ◽  
Nurshafikah Nadirah Alias ◽  
Md Azree Othuman Mydin ◽  
Hanizam Awang

As issues related to sustainable construction in Malaysia gains more importance, research on the utilization of waste by products especially from oil palm in concrete is vigorously implemented. Utilization of different parts of oil palm fibres in lightweight foamed concrete have garnered positive outcomes in terms of conservation of natural resources, lessening of environmental problem and can improve concrete's durability and mechanical properties. Lightweight foamed concrete (LFC) is well-known as a low-density concrete with a wide range of applications. It is good in compression but poor under flexural load, as it produces multiple microcracks and cannot withstand the additional stress induced by applied forces without supplementary reinforcing elements. Hence this study was performed to examine the potential use of oil palm spikelets fibre (OPSF) in LFC in order to improve its engineering properties. LFC specimens were strengthened with OPSF fibre at different percentages of 0.15%, 0.30%, 0.45%, and 0.60%. LFC density of 1000 kg/m3 was prepared with a constant cement-to-sand ratio of 1:1.5, and cement-to-water ratio of 0.45. The parameters that had been evaluated were flexural strength, compressive strength and splitting tensile strength. The results revealed that the addition of 0.45% of OPSF fibre gave the best compressive, bending and splitting tensile strengths result. OPSF fibre in LFC aided to evade the promulgation of cracks in the plastic state in the cementitious matrix.


Sign in / Sign up

Export Citation Format

Share Document