Quantum Size Effects Arising from Nanocomposites Physical Doping with Nanostructures Having High Electron Affinit

Author(s):  
P.I. Vysikaylo

This article considers main problems in application of nanostructured materials in high technologies. Theoretical development and experimental verification of methods for creating and studying the properties of physically doped materials with spatially inhomogeneous structure on micro and nanometer scale are proposed. Results of studying 11 quantum size effects exposed to nanocomposites physical doping with nanostructures with high electron affinity are presented. Theoretical and available experimental data were compared in regard to creation of nanostructured materials, including those with increased strength and wear resistance, inhomogeneous at the nanoscale and physically doped with nanostructures, i.e., quantum traps for free electrons. Solving these problems makes it possible to create new nanostructured materials, investigate their varying physical properties, design, manufacture and operate devices and instruments with new technical and functional capabilities, including those used in the nuclear industry. Nanocrystalline structures, as well as composite multiphase materials and coatings properties could be controlled by changing concentrations of the free carbon nanostructures there. It was found out that carbon nanostructures in the composite material significantly improve impact strength, microhardness, luminescence characteristics, temperature resistance and conductivity up to 10 orders of magnitude, and expand the range of such components’ possible applications in comparison with pure materials, for example, copper, aluminum, transition metal carbides, luminophores, semiconductors (thermoelectric) and silicone (siloxane, polysiloxane, organosilicon) compounds

1991 ◽  
Vol 16 (6) ◽  
pp. 623-638 ◽  
Author(s):  
P.A. Badoz ◽  
F. Arnaud d'Avitaya ◽  
E. Rosencher

1983 ◽  
Vol 44 (C10) ◽  
pp. C10-375-C10-378 ◽  
Author(s):  
P. Ahlqvist ◽  
P. de Andrés ◽  
R. Monreal ◽  
F. Flores

1968 ◽  
Vol 96 (9) ◽  
pp. 61-86 ◽  
Author(s):  
B.A. Tavger ◽  
V.Ya. Demikhovskii

1997 ◽  
Vol 229 (6) ◽  
pp. 401-405 ◽  
Author(s):  
A. Crépieux ◽  
C. Lacroix ◽  
N. Ryzhanova ◽  
A. Vedyayev

2006 ◽  
Vol 100 (11) ◽  
pp. 114905 ◽  
Author(s):  
M. Cattani ◽  
M. C. Salvadori ◽  
A. R. Vaz ◽  
F. S. Teixeira ◽  
I. G. Brown

1993 ◽  
Vol 97 (37) ◽  
pp. 9493-9498 ◽  
Author(s):  
Ladislav Kavan ◽  
Tiziana Stoto ◽  
Michael Graetzel ◽  
Donald Fitzmaurice ◽  
Valery Shklover

1992 ◽  
Vol 283 ◽  
Author(s):  
R. Tsu ◽  
L. Ioriatti ◽  
J. F. Harvey ◽  
H. Shen ◽  
R. A. Lux

ABSTRACTThe reduction of the dielectric constant due to quantum confinement is studied both experimentally and theoretically. Angle resolved ellipsometry measurements with Ar- and He-Ne-lasers give values for the index of refraction far below what can be accounted for from porosity alone. A modified Penn model to include quantum size effects has been used to calculate the reduction in the static dielectric constant (ε) with extreme confinement. Since the binding energy of shallow impurities depends inversely on ε2, the drastic decrease in the carrier concentration as a result of the decrease in ε leads to a self-limiting process for the electrochemical etching of porous silicon.


2006 ◽  
Vol 89 (18) ◽  
pp. 183109 ◽  
Author(s):  
Tie-Zhu Han ◽  
Guo-Cai Dong ◽  
Quan-Tong Shen ◽  
Yan-Feng Zhang ◽  
Jin-Feng Jia ◽  
...  

2005 ◽  
Vol 1 (1) ◽  
pp. 17-20
Author(s):  
Ting-yun Wang ◽  
Ke-xin Wang ◽  
Jun Lu

Sign in / Sign up

Export Citation Format

Share Document