scholarly journals On single-valuedness of ground-state energy determination in the method of density functional

Author(s):  
О.С. Еркович ◽  
◽  
А.М. Руцкая ◽  
2007 ◽  
Vol 21 (13n14) ◽  
pp. 2134-2144 ◽  
Author(s):  
B. TANATAR ◽  
A. L. SUBAŞI ◽  
K. ESFARJANI ◽  
S. M. FAZELI

Two-dimensional (2D) electron systems in the presence of disorder are of interest in connection with the observed metal-insulator transition in such systems. We use density functional theory in its local-spin density approximation (LSDA) to calculate the ground-state energy of a 2D electron system in the presence of remote charged impurities which up on averaging provides disorder. The inverse compressibility calculated from the ground-state energy exhibits a minimum at a critical density controlled by the disorder strength. Our findings are in agreement with experimental results.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2017 ◽  
Vol 31 (07) ◽  
pp. 1750071
Author(s):  
Z. D. Vatansever ◽  
S. Sakiroglu ◽  
I. Sokmen

In this paper, the effects of a repulsive scattering center on the ground-state energy and spin properties of a three-electron parabolic quantum dot are investigated theoretically by means of configuration interaction method. Phase transition from a weakly correlated regime to a strongly correlated regime is examined from several strengths and positions of Gaussian impurity. Numerical results reveal that the transition from spin-1/2 to spin-3/2 state depends strongly on the location of the impurity which accordingly states the controllability of the spin polarization. Moreover, broken circular symmetry results in more pronounced electronic charge localization.


Sign in / Sign up

Export Citation Format

Share Document