Streaming big data for failure prediction in mechanical engineering

Author(s):  
A.M. Pavlov ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 30-50 ◽  
Author(s):  
William H. Money ◽  
Stephen J. Cohen

This article analyzes the properties of unknown faults in knowledge management and Big Data systems processing Big Data in real-time. These faults introduce risks and threaten the knowledge pyramid and decisions based on knowledge gleaned from volumes of complex data. The authors hypothesize that not yet encountered faults may require fault handling, an analytic model, and an architectural framework to assess and manage the faults and mitigate the risks of correlating or integrating otherwise uncorrelated Big Data, and to ensure the source pedigree, quality, set integrity, freshness, and validity of the data. New architectures, methods, and tools for handling and analyzing Big Data systems functioning in real-time will contribute to organizational knowledge and performance. System designs must mitigate faults resulting from real-time streaming processes while ensuring that variables such as synchronization, redundancy, and latency are addressed. This article concludes that with improved designs, real-time Big Data systems may continuously deliver the value of streaming Big Data.


2018 ◽  
Vol 16 (1/2) ◽  
pp. 207-222 ◽  
Author(s):  
Hafiz A. Alaka ◽  
Lukumon O. Oyedele ◽  
Hakeem A. Owolabi ◽  
Muhammad Bilal ◽  
Saheed O. Ajayi ◽  
...  

This study explored use of big data analytics (BDA) to analyse data of a large number of construction firms to develop a construction business failure prediction model (CB-FPM). Careful analysis of literature revealed financial ratios as the best form of variable for this problem. Because of MapReduce’s unsuitability for iteration problems involved in developing CB-FPMs, various BDA initiatives for iteration problems were identified. A BDA framework for developing CB-FPM was proposed. It was validated by using 150,000 datacells of 30,000 construction firms, artificial neural network, Amazon Elastic Compute Cloud, Apache Spark and the R software. The BDA CB-FPM was developed in eight seconds while the same process without BDA was aborted after nine hours without success. This shows the issue of not wanting to use large dataset to develop CB-FPM due to tedious duration is resolvable by applying BDA technique. The BDA CB-FPM largely outperformed an ordinary CB-FPM developed with a dataset of 200 construction firms, proving that use of larger sample size with the aid of BDA, leads to better performing CB-FPMs. The high financial and social cost associated with misclassifications (i.e. model error) thus makes adoption of BDA CB-FPMs very important for, among others, financiers, clients and policy makers.


2015 ◽  
Vol 63 (10) ◽  
pp. 2663-2677 ◽  
Author(s):  
Morteza Mardani ◽  
Gonzalo Mateos ◽  
Georgios B. Giannakis

Sign in / Sign up

Export Citation Format

Share Document